fulltext.study @t Gmail

Tumor reactive ringlet oxygen approach for Monte Carlo modeling of photodynamic therapy dosimetry

Paper ID Volume ID Publish Year Pages File Format Full-Text
29601 44422 2016 9 PDF Available
Title
Tumor reactive ringlet oxygen approach for Monte Carlo modeling of photodynamic therapy dosimetry
Abstract

•A model to simulate photodynamic parameters in PDT is performed.•Monte Carlo simulation were performed in the GPU to calculate the light distribution in tumor tissue.•The model results matched the experimental data previously published in the field.•A new dosimetry quantity, TRSO, is introduced to calculate the minimal fluence to destroy a tumor.

Photodynamic therapy (PDT) is an emergent technique used for the treatment of several diseases. It requires the interaction of three components: a photosensitizer, a light source and tissue oxygen. Knowledge of the biophysical aspects of PDT is important for improving dosimetry protocols and treatment planning. In this paper we propose a model to simulate the spatial and temporal distribution of ground state oxygen (3O2), cumulative singlet excited state oxygen (1O2)rx and photosensitizer, in this case protoporphyrin IX (PpIX) in an ALA mediated PDT treatment. The results are analyzed in order to improve the treatment dosimetry. We compute the light fluence in the tissue using Monte Carlo simulations running in a GPU system. The concentration of 3O2, (1O2)rx and the photosensitizer are calculated using this light fluence and a set of differential equations describing the photochemical reactions involved in PDT. In the model the initial photosensitizer concentration depends on tissue depth and type, moreover we consider blood vessel damage and its effect in the ground state oxygen concentration in the tissue. We introduce the tumor reactive single oxygen (TRSO) as a new dosimetry metric. It represents the amount of singlet oxygen per tumor volume that reacts, during the treatment, with the molecules in the tumor. This quantity integrates the effect of the light irradiance, the optical properties of the tumor and the normal tissue, the oxygen consumption and supply, and the photosensitizer biodistribution on the skin.

Keywords
Photodynamic therapy dosimetry; Monte Carlo simulation; Mathematical model
First Page Preview
Tumor reactive ringlet oxygen approach for Monte Carlo modeling of photodynamic therapy dosimetry
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Photochemistry and Photobiology B: Biology - Volume 160, July 2016, Pages 383–391
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us