fulltext.study @t Gmail

Hypericin phototoxicity induces different modes of cell death in melanoma and human skin cells

Paper ID Volume ID Publish Year Pages File Format Full-Text
30363 44474 2008 10 PDF Available
Title
Hypericin phototoxicity induces different modes of cell death in melanoma and human skin cells
Abstract

Hypericin, the major component of St. John’s Wort, absorbs light in the UV and visible ranges whereupon it becomes phototoxic through the production of reactive oxygen species. Although photodynamic mechanisms (i.e. through endogenous photosensitizers) play a role in UVA phototherapy for the treatment of skin disorders such as eczema and psoriasis, photodynamic therapy employing exogenous photosensitizers are currently being used only for the treatment of certain forms of non-melanoma skin cancers and actinic keratoses. There are few reports however on its use in treating melanomas. This in vitro study analyses the phototoxic effect of UVA (400–315 nm) – activated hypericin in human pigmented and unpigmented melanomas and immortalised keratinocytes and melanocytes. We show that neither hypericin exposure nor UV irradiation alone reduces cell viability. We show that an exposure to 1 μM UVA-activated hypericin does not bring about cell death, while 3 μM activated hypericin induces a necrotic mode of cell death in pigmented melanoma cells and melanocytes and an apoptotic mode of cell death in non-pigmented melanoma cells and keratinocytes. We hypothesis that the necrotic mode of cell death in the pigmented cells is possibly related to the presence of melanin-containing melanosomes in these cells and that the hypericin-induced increase in reactive oxygen species leads to an increase in permeability of melanosomes. This would result in toxic melanin precursors (of an indolic and phenolic nature) leaking into the cytoplasm which in turn leads to cell death. Hypericin localisation in the endoplasmic reticulum in these cells shown by fluorescent microscopy, further support a disruption in cellular processing and induction of cell death. In contrast, this study shows that cells that do not contain melanosomes (non-pigmented melanoma cells and keratinocytes) die by apoptosis. Further, using a mitochondrial-specific fluorescent dye, we show that intracellular accumulation of hypericin induces a mitochondrial-associated caspase-dependent apoptotic mode of cell death.This work suggests that UVA is effective in activating hypericin and that this phototoxicity may be considered as treatment option in some cases of lentigo maligna or lentigo maligna melanoma that are too large for surgical resection.

Keywords
Hypericin; Photodynamic therapy; Melanocyte; Keratinocyte; Melanoma; Apoptosis
First Page Preview
Hypericin phototoxicity induces different modes of cell death in melanoma and human skin cells
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Photochemistry and Photobiology B: Biology - Volume 91, Issues 2–3, 29 May 2008, Pages 67–76
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us