fulltext.study @t Gmail

Robust demarcation of basal cell carcinoma by dependent component analysis-based segmentation of multi-spectral fluorescence images

Paper ID Volume ID Publish Year Pages File Format Full-Text
30990 44524 2010 9 PDF Available
Title
Robust demarcation of basal cell carcinoma by dependent component analysis-based segmentation of multi-spectral fluorescence images
Abstract

This study was designed to demonstrate robust performance of the novel dependent component analysis (DCA)-based approach to demarcation of the basal cell carcinoma (BCC) through unsupervised decomposition of the red–green–blue (RGB) fluorescent image of the BCC. Robustness to intensity fluctuation is due to the scale invariance property of DCA algorithms, which exploit spectral and spatial diversities between the BCC and the surrounding tissue. Used filtering-based DCA approach represents an extension of the independent component analysis (ICA) and is necessary in order to account for statistical dependence that is induced by spectral similarity between the BCC and surrounding tissue. This generates weak edges what represents a challenge for other segmentation methods as well. By comparative performance analysis with state-of-the-art image segmentation methods such as active contours (level set), K-means clustering, non-negative matrix factorization, ICA and ratio imaging we experimentally demonstrate good performance of DCA-based BCC demarcation in two demanding scenarios where intensity of the fluorescent image has been varied almost two orders of magnitude.

Keywords
Basal cell carcinoma; Photodynamic detection; Dependent component analysis; Tumor demarcation; Multi-spectral image
First Page Preview
Robust demarcation of basal cell carcinoma by dependent component analysis-based segmentation of multi-spectral fluorescence images
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Photochemistry and Photobiology B: Biology - Volume 100, Issue 1, 2 July 2010, Pages 10–18
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering