fulltext.study @t Gmail

Inactivation of microorganisms in apple juice using an ultraviolet silica-fiber optical device

Paper ID Volume ID Publish Year Pages File Format Full-Text
31014 44528 2010 6 PDF Available
Title
Inactivation of microorganisms in apple juice using an ultraviolet silica-fiber optical device
Abstract

Most juices are opaque to ultraviolet (UV) due to the high-suspended solids in them and therefore the conventional UV treatment, generally used for water treatment, cannot be used for treating juices. In order to achieve a high germicidal efficiency of UV processing, an optical device with silica optical fibers for UV light delivery was designed. Its suitability for application could be shown in experiments with Escherichia coli, Lactobacillus brevis, Saccharomyces cerevisiae and naturally contaminating microorganisms as test microorganisms. The thin-film thickness for treating apple juice was optimized. At 2.0-mm film thickness, E. coli and L. brevis were reduced by up to 6 log orders with the UV dose of 23.7 mJ/cm2 and the optical-fiber distribution density of 15 fibers/cm2, while only about 4-log reduction of S. cerevisiae was achieved under the same condition. Naturally contaminating lactic acid bacteria, Enterobacteriaceae and yeasts and moulds in freshly extracted apple juice were reduced to below 10 CFU/ml. These results indicate that this optical device could be used to improve microbial safety and extend shelf-life of apple juice.

Keywords
UV irradiation; Silica optical fibers; Apple juice; Escherichia coli; Microbial safety
First Page Preview
Inactivation of microorganisms in apple juice using an ultraviolet silica-fiber optical device
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Photochemistry and Photobiology B: Biology - Volume 100, Issue 3, 2 September 2010, Pages 167–172
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us