fulltext.study @t Gmail

Linear and nonlinear optical effects induced by energy transfer from semiconductor nanoparticles to photosynthetic biological systems

Paper ID Volume ID Publish Year Pages File Format Full-Text
31275 44728 2014 16 PDF Available
Title
Linear and nonlinear optical effects induced by energy transfer from semiconductor nanoparticles to photosynthetic biological systems
Abstract

•Hybrid nano-bio materials with enhanced biofunctionality.•Quantum dots nanoantennas coupled with the bacterial reaction center.•Enhancement of proton pumping across biomembrane by quantum dots.•Strong effect of FRET on the nonlinear properties of hybrid nano-bio materials.•Hybrid nano-bio materials for renewable energy conversion.

The development of new hybrid materials that can be integrated into current technologies is one of the most important challenges facing material scientists today. The purpose of this work is to review recent studies in one largely unexplored area of nanobiotechnology: the development of nano-bio hybrid materials that exploit Förster Resonance Energy Transfer (FRET) to enhance the functionalities of technologically promising photosynthetic biomaterials. One of very promising approaches is to employ semiconductor quantum dots having a broad absorption spectrum as nanoantennae coupled with the natural light-harvesting complexes of photosynthetic reaction centers. This system reveals great potential for the utilization of quantum dots in artificial photosynthetic devices. The second very useful functionality, which is discussed in this review, is the possibility to enhance the efficiency of the main biological function (proton pumping) of the protein bacteriorhodopsin using nonradiative energy transfer from quantum dots. Also recent studies revealed that FRET-based improvement of the biological function of bacteriorhodopsin in the presence of quantum dots allows for strong wavelength-dependent enhancement of the nonlinear refractive index of bacteriorhodopsin. These new hybrid bio-nanomaterials with exceptional light-harvesting and nonlinear properties will have numerous photonic applications employing their photochromic, energy transfer, and energy conversion properties.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Keywords
Förster Resonance Energy Transfer; Quantum dots; Light-harvesting; Photosynthesis; Bacteriorhodopsin
First Page Preview
Linear and nonlinear optical effects induced by energy transfer from semiconductor nanoparticles to photosynthetic biological systems
Publisher
Database: Elsevier - ScienceDirect
Journal: Journal of Photochemistry and Photobiology C: Photochemistry Reviews - Volume 20, September 2014, Pages 17–32
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering