fulltext.study @t Gmail

Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds

Paper ID Volume ID Publish Year Pages File Format Full-Text
31493 44803 2016 9 PDF Available
Title
Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds
Abstract

•A synthetic dszB1A1C1-D1 cassette enhances bioconversion of DBT to 2HBP in P. putida.•Extracellular secretion of HBPS should be minimized for improving biodesulfurization.•Synthetic bacterial consortia are shown to be a successful DBT bioconversion strategy.

The 4S pathway is the most studied bioprocess for the removal of the recalcitrant sulfur of aromatic heterocycles present in fuels. It consists of three sequential functional units, encoded by the dszABCD genes, through which the model compound dibenzothiophene (DBT) is transformed into the sulfur-free 2-hydroxybiphenyl (2HBP) molecule. In this work, a set of synthetic dsz cassettes were implanted in Pseudomonas putida KT2440, a model bacterial “chassis” for metabolic engineering studies. The complete dszB1A1C1-D1 cassette behaved as an attractive alternative — to the previously constructed recombinant dsz cassettes — for the conversion of DBT into 2HBP. Refactoring the 4S pathway by the use of synthetic dsz modules encoding individual 4S pathway reactions revealed unanticipated traits, e.g., the 4S intermediate 2HBP-sulfinate (HBPS) behaves as an inhibitor of the Dsz monooxygenases, and once secreted from the cells it cannot be further taken up. That issue should be addressed for the rational design of more efficient biocatalysts for DBT bioconversions. In this sense, the construction of synthetic bacterial consortia to compartmentalize the 4S pathway into different cell factories for individual optimization was shown to enhance the conversion of DBT into 2HBP, overcome the inhibition of the Dsz enzymes by the 4S intermediates, and enable efficient production of unattainable high added value intermediates, e.g., HBPS, that are difficult to obtain using the current monocultures.

Keywords
Dibenzothiophene; 2-hydroxybiphenyll dsz cassettes; Pseudomonas putida; Synthetic bacterial consortia
First Page Preview
Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Metabolic Engineering - Volume 35, May 2016, Pages 46–54
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us