fulltext.study @t Gmail

Aerobic biosynthesis of hydrocinnamic acids in Escherichia coli with a strictly oxygen-sensitive enoate reductase

Paper ID Volume ID Publish Year Pages File Format Full-Text
31496 44803 2016 8 PDF Available
Title
Aerobic biosynthesis of hydrocinnamic acids in Escherichia coli with a strictly oxygen-sensitive enoate reductase
Abstract

•A strictly oxygen-sensitive 2-enoate reductase used for aerobic biosynthesis.•Extending aromatic amino acid biosynthesis in E. coli.•Biosynthesis of hydrocinnamic acids in E. coli for the first time.

3-Phenylpropionic acid (3PPA) and 3-(4-hydroxyphenyl) propionic acid (HPPA) are important commodity aromatic acids widely used in food, pharmaceutical and chemical industries. Currently, 3PPA and HPPA are mainly manufactured through chemical synthesis, which contains multiple steps involving toxic solvents and catalysts harmful to environment. Therefore, replacement of such existing petroleum-derived approaches with simple and environmentally friendly biological processes is highly desirable for manufacture of these chemicals. Here, for the first time we demonstrated the de novo biosynthesis of 3PPA and HPPA using simple carbon sources in E. coli by extending the cinnamic acids biosynthesis pathways through biological hydrogenation. We first screened 11 2-enoate reductases (ER) from nine microorganisms, leading to efficient conversion of cinnamic acid and p-coumaric acid to 3PPA and HPPA, respectively. Surprisingly, we found a strictly oxygen-sensitive Clostridia ER capable of functioning efficiently in E. coli even under aerobic conditions. On this basis, reconstitution of the full pathways led to the de novo production of 3PPA and HPPA and the accumulation of the intermediates (cinnamic acid and p-coumaric acid) with cell toxicity. To address this problem, different expression strategies were attempted to optimize individual enzyme׳s expression level and minimize intermediates accumulation. Finally, the titers of 3PPA and HPPA reached 366.77 mg/L and 225.10 mg/L in shake flasks, respectively. This study not only demonstrated the potential of microbial approach as an alternative to chemical process, but also proved the possibility of using oxygen-sensitive enzymes under aerobic conditions.

Keywords
3-Phenylpropionic acid; 3-(4-Hydroxyphenyl) propionic acid; Enoate reductase; Hydrocinnamic acids; Aromatic acids
First Page Preview
Aerobic biosynthesis of hydrocinnamic acids in Escherichia coli with a strictly oxygen-sensitive enoate reductase
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Metabolic Engineering - Volume 35, May 2016, Pages 75–82
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us