fulltext.study @t Gmail

Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae

Paper ID Volume ID Publish Year Pages File Format Full-Text
31598 44823 2013 8 PDF Available
Title
Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae
Abstract

Microbial production of biofuel has attracted significant attention in recent years. The fatty acids are important precursors for the production of fuels and chemicals, and its biosynthesis is initiated by the conversion of acetyl-CoA to malonyl-CoA which requires acetyl-CoA as key substrate. Herein, the yeast Saccharomyces cerevisiae was proposed to be metabolically engineered for cytosol acetyl-CoA enhancement for fatty acid synthesis. By gene disruption strategy, idh1 and idh2 genes involved in citrate turnover in tricarboxylic acid cycle (TCA cycle) were disrupted and the citrate production level was increased to 4- and 5-times in mutant yeast strains. In order to convert accumulated citrate to cytosol acetyl-CoA, a heterologous ATP-citrate lyase (ACL) was overexpressed in yeast wild type and idh1,2 disrupted strains. The wild type strain expressing acl mainly accumulated saturated fatty acids: C14:0, C16:0 and C18:0 at levels about 20%, 14% and 27%, respectively. Additionally, the idh1,2 disrupted strains expressing acl mainly accumulated unsaturated fatty acids. Specifically in Δidh1 strain expressing acl, 80% increase in C16:1 and 60% increase in C18:1 was detected. In Δidh2 strain expressing acl, 60% increase in C16:1 and 45% increase in C18:1 was detected. In Δidh1/2 strain expressing acl, there was 92% increase in C16:1 and 77% increase in C18:1, respectively. The increased fatty acids from our study may well be potential substrates for the production of hydrocarbon molecules as potential biofuels.

► Fatty acid synthesis in Saccharomyces cerevisiae. ► Deletion of idh1, 2 genes in S. cerevisiae for accumulation of cytosolic citrate. ► Heterologous expression of ATP-citrate lyase in S. cerevisiae for conversion of citrate to acetyl-CoA. ► Increased fatty acid as precursors of hydrocarbons/biofuels.

Keywords
Metabolic engineering; Saccharomyces cerevisiae; Citrate; ATP-citrate lyase; Fatty acid synthesis
First Page Preview
Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Metabolic Engineering - Volume 16, March 2013, Pages 95–102
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us