fulltext.study @t Gmail

Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum

Paper ID Volume ID Publish Year Pages File Format Full-Text
31682 44829 2010 9 PDF Available
Title
Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum
Abstract

d-xylose utilization is a key issue for lignocellulosic biomass fermentation, and a major problem in this process is carbon catabolite repression (CCR). In this investigation, solvent-producing bacterium Clostridium acetobutylicum ATCC 824 was metabolically engineered to eliminate d-glucose repression of d-xylose utilization. The ccpA gene, encoding the pleiotropic regulator CcpA, was experimentally characterized and then disrupted. Under pH-controlled conditions, the ccpA-disrupted mutant (824ccpA) can use a mixture of d-xylose and d-glucose simultaneously without CCR. Moreover, this engineered strain produced acetone, butanol and ethanol (ABE) at a maximal titer of 4.94, 12.05 and 1.04 g/L, respectively, which was close to the solvent level of maize- or molasses-based fermentation by wild type C. acetobutylicum. Molar balance analysis for improved process of mixed sugars utilization also revealed less acid accumulation and more butanol yield by the engineered strain as compared to the wild type. This study offers a genetic modification strategy for improving simultaneous utilization of mixed sugars by Clostridium, which is essential for commercial exploitation of lignocellulose for the production of solvents and biofuels.

Keywords
Clostridium acetobutylicum; Disruption of ccpA; d-glucose/d-xylose mixture utilization
First Page Preview
Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Metabolic Engineering - Volume 12, Issue 5, September 2010, Pages 446–454
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us