fulltext.study @t Gmail

Thermal-aggregation suppression of proteins by a structured PEG analogue: Importance of denaturation temperature for effective aggregation suppression

Paper ID Volume ID Publish Year Pages File Format Full-Text
3180 154 2014 8 PDF Available
Title
Thermal-aggregation suppression of proteins by a structured PEG analogue: Importance of denaturation temperature for effective aggregation suppression
Abstract

•Stabilization of carbonic anhydrase, lysozyme and phospholipase was demonstrated by triangle-PEG.•Triangle-PEG suppresses the thermal aggregation of proteins.•Triangle-PEG enhances refolding of proteins in the cooling process.•Proteins denaturing at higher temperatures than the dehydration temperature of triangle-PEG are stabilized.

Development of protein stabilizing reagents, that suppress aggregation and assist refolding, is an important issue in biochemical technology related with the synthesis and preservation of therapeutic or other functional proteins. In the precedent research, we have developed a structured poly(ethylene glycol) (PEG) analogue with triangular geometry, which turns into a dehydrated state above ca. 60 °C. Focusing on this rather lower dehydration temperature than that of conventional linear PEGs, a capability of the triangle-PEG to stabilize proteins under thermal stimuli was studied for citrate synthase, carbonic anhydrase, lysozyme and phospholipase. Variable temperature high-tension voltage and circular dichroism spectroscopic studies on the mixtures of these proteins and the triangle-PEG showed that the triangle-PEG stabilizes carbonic anhydrase, lysozyme and phospholipase that exhibit denaturation temperatures higher than 60 °C, while substantially no stabilization was observed for citrate synthase that denatures below 60 °C. Hence, the dehydrated triangle-PEG likely interacts with partially unfolded proteins through the hydrophobic interaction to suppress protein aggregation.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Keywords
Poly(ethylene glycol); Aggregation; Circular dichroism spectroscopy; High-tension voltage analysis; Protein denaturation; Refolding
First Page Preview
Thermal-aggregation suppression of proteins by a structured PEG analogue: Importance of denaturation temperature for effective aggregation suppression
Publisher
Database: Elsevier - ScienceDirect
Journal: Biochemical Engineering Journal - Volume 86, 15 May 2014, Pages 41–48
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering