fulltext.study @t Gmail

Mitigation of Fe0 nanoparticles toxicity to Trichosporon cutaneum by humic substances

Paper ID Volume ID Publish Year Pages File Format Full-Text
33046 44954 2016 9 PDF Available
Title
Mitigation of Fe0 nanoparticles toxicity to Trichosporon cutaneum by humic substances
Abstract

•The ability of humic substances to mitigate nZVI toxicity was proven.•Simultaneous application of nZVI and humic substances was the most effective.•Adsorption of humic substances on cell surface was observed.

Zero-valent iron nanoparticles (nZVI) are a relatively new option for the treatment of contaminated soil and groundwater. However, because of their apparent toxicity, nZVI in high concentrations are known to interfere with many autochthonous microorganisms and, thus, impact their participation in the remediation process. The effect of two commercially available nZVI products, Nanofer 25 (non-stabilized) and Nanofer 25S (stabilized), was examined. Considerable toxicity to the soil yeast Trichosporon cutaneum was observed. Two chemically different humic substances (HSs) were studied as a possible protection agent that mitigates nZVI toxicity: oxidized oxyhumolite X6 and humic acid X3A. The effect of addition of HSs was studied in different phases of the experiment to establish the effect on cells and nZVI. SEM and TEM images revealed an ability of both types of nZVI and HSs to adsorb on surface of the cells. Changes in cell surface properties were also observed by zeta potential measurements. Our results indicate that HSs can act as an electrosteric barrier, which hinders mutual interaction between nZVI and treated cell. Thus, the application of HS seems to be a promising solution to mitigating the toxic action of nZVI.

First Page Preview
Mitigation of Fe0 nanoparticles toxicity to Trichosporon cutaneum by humic substances
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: New Biotechnology - Volume 33, Issue 1, 25 January 2016, Pages 144–152
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us