fulltext.study @t Gmail

Plant–microorganism interactions in bioremediation of polychlorinated biphenyl-contaminated soil

Paper ID Volume ID Publish Year Pages File Format Full-Text
33503 44981 2012 8 PDF Available
Title
Plant–microorganism interactions in bioremediation of polychlorinated biphenyl-contaminated soil
Abstract

During the second half of the last century a large amount of substances toxic for higher organisms was released to the environment. Physicochemical methods of pollutant removal are difficult and prohibitively expensive. Using biological systems such as microorganisms, plants, or consortia microorganisms–plants is easier, cheaper, and more environmentally friendly. The aim of this study was to isolate, characterize and identify microorganisms from contaminated soil and to find out the effect of plants on microbial diversity in the environment. Microorganisms were isolated by two approaches with the aim to find all cultivable species and those able to utilise biphenyl as a sole source of carbon and energy. The first approach was direct extraction and the second was isolation of bacteria after enrichment cultivation with biphenyl. Isolates were biochemically characterized by NEFERMtest 24 and then the composition of ribosomal proteins in bacterial cells was determined by MALDI-TOF mass spectrometry. Ribosomal proteins can be used as phylogenetic markers and thus MALDI-TOF MS can be exploited also for taxonomic identification because the constitution of ribosomal proteins in bacterial cells is specific for each bacterial species. Identification of microorganisms using this method is performed with the help of database Bruker Daltonics MALDI BioTyper. Isolated bacteria were analyzed from the point of the bphA gene presence. Bacteria with detected bphA gene were then taxonomically identified by 16S rRNA sequence.The ability of two different plant species, tobacco (Nicotiana tabacum) and nightshade (Solanum nigrum), to accumulate PCBs was studied as well. It was determined that various plant species differ in the PCBs accumulation from the contaminated soil. Also the content of PCBs in various plant tissues was compared. PCBs were detected in roots and aboveground biomass including leaves and berries.

First Page Preview
Plant–microorganism interactions in bioremediation of polychlorinated biphenyl-contaminated soil
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: New Biotechnology - Volume 30, Issue 1, 15 November 2012, Pages 15–22
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us