fulltext.study @t Gmail

Pro-angiogenic CD14++ CD16+ CD163+ monocytes accelerate the in vitro endothelialization of soft hydrophobic poly(n-butyl acrylate) networks ☆

Paper ID Volume ID Publish Year Pages File Format Full-Text
339 38 2012 7 PDF Available
Title
Pro-angiogenic CD14++ CD16+ CD163+ monocytes accelerate the in vitro endothelialization of soft hydrophobic poly(n-butyl acrylate) networks ☆
Abstract

As the majority of the polymers used as cardiovascular grafts so far do not match the elasticity of human arteries (100–1000 kPa) and the required endothelialization, a multifunctional material approach is needed to allow the adjustment of the mechanical properties while at the same time exhibiting a haemocompatible surface. Recently soft poly(n-butyl acrylate) networks (cPnBA) with adjustable mechanical properties were introduced as candidate materials with a surface that can be endothelialized. In this study, angiogenically stimulated intermediate CD163+ monocytes/macrophages (aMO2) were utilized as a cellular cytokine release system to realize the functional endothelialization of the hydrophobic cPnBA surface. We investigated the influence of co-cultured aMO2 on the morphology, density and cytokine secretion of human umbilical venous endothelial cells (HUVEC) seeded on cPnBA with an elastic modulus of around 250 kPa (cPnBA0250). A functional confluent HUVEC monolayer could be developed in the co-culture within 3 days. In contrast, the HUVEC in the monoculture exhibited stress fibres, broadened marginal filament bands and significantly more and larger cell-free areas in the monolayer, indicating incomplete cell–substrate binding. Remarkably, a functional confluent monolayer formation could only be achieved in co-cultures; it did not develop with the sole supplementation of recombinant VEGF-A165 to the HUVEC monocultures (unpublished data). The study demonstrated the multifunctional potential of cPnBA in combination with aMO2 as a cellular cytokine release system, adapting their secretion to the demand of HUVEC. In this way, a functional confluent monolayer could be generated within 3 days.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (104 K)Download as PowerPoint slide

Keywords
Multifunctional biomaterial; Endothelialization; Monocytes; Co-culture; Cellular cytokine release system
First Page Preview
Pro-angiogenic CD14++ CD16+ CD163+ monocytes accelerate the in vitro endothelialization of soft hydrophobic poly(n-butyl acrylate) networks ☆
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 8, Issue 12, December 2012, Pages 4253–4259
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us