fulltext.study @t Gmail

Enantioselective synthesis of (S)-phenylephrine by recombinant Escherichia coli cells expressing the short-chain dehydrogenase/reductase gene from Serratia quinivorans BCRC 14811

Paper ID Volume ID Publish Year Pages File Format Full-Text
34547 45033 2013 7 PDF Available
Title
Enantioselective synthesis of (S)-phenylephrine by recombinant Escherichia coli cells expressing the short-chain dehydrogenase/reductase gene from Serratia quinivorans BCRC 14811
Abstract

•A short-chain dehydrogenase/reductase (SQ_SDR) from Serratia quinivorans.•SQ_SDR strongly prefers NADH as cofactor for converting HPMAE to (S)-PE.•E. coli BL21 (DE3) expressing SQ_SDR can produce (S)-PE from HPMAE.•Glucose is a desirable carbon source for effective recycling of NADH.

BackgroundAn amino alcohol dehydrogenase gene (RE_AADH) from Rhodococcus erythropolis BCRC 10909 has been used for the conversion of 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) to (S)-phenylephrine [(S)-PE]. However RE_AADH uses NADPH as cofactor, and only limited production of (S)-PE from HPMAE is achieved.MethodsA short-chain dehydrogenase/reductase gene (SQ_SDR) from Serratia quinivorans BCRC 14811 was expressed in Escherichia coli BL21 (DE3) for the conversion of HPMAE to (S)-PE.ResultsThe SQ_SDR enzyme was capable of converting HPMAE to (S)-PE in the presence of NADH and NADPH, with specific activities of 26.5 ± 2.3 U/mg protein and 0.24 ± 0.01 U/mg protein, respectively, at 30 °C and at a pH of 7.0. The E. coli BL21 (DE3), expressing NADH-preferring SQ_SDR, converted HPMAE to (S)-PE with more than 99% enantiomeric excess, a conversion yield of 86.6% and a productivity of 20.2 mmol/l h, which was much higher than our previous report using E. coli NovaBlue expressing NADPH-dependent RE_AADH as the biocatalyst.ConclusionThe SQ_SDR enzyme with its high catalytic activity and strong preference for NADH as a cofactor provided a significant advantage in bioreduction.

Keywords
Serratia quinivorans; Short-chain dehydrogenase/reductase; Enantioselective synthesis; Phenylephrine; Biocatalyst
First Page Preview
Enantioselective synthesis of (S)-phenylephrine by recombinant Escherichia coli cells expressing the short-chain dehydrogenase/reductase gene from Serratia quinivorans BCRC 14811
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Process Biochemistry - Volume 48, Issue 10, October 2013, Pages 1509–1515
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us