fulltext.study @t Gmail

Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264

Paper ID Volume ID Publish Year Pages File Format Full-Text
35136 45077 2009 8 PDF Available
Title
Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264
Abstract

An efficient integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264 was developed. Perillic acid is a promising candidate for natural preservation and pharmaceutical application. At elevated concentrations the monoterpenoic acid inhibits growth and biotransformation activity of P. putida DSM 12264. The maximum growth rate showed a linear decrease from μ = 1.43 h−1 in the absence of perillic acid to complete inhibition at 165 ± 7 mM perillic acid. The maximum specific activity of limonene-transforming resting cells revealed an exponential decrease from almost 8 U/g cdw without perillic acid to <0.5 U/g cdw at >25 mM perillic acid. A method for in situ product recovery (ISPR) based on anion exchange resin was established to overcome product inhibition. A column containing a fluidized bed of Amberlite IRA 410 Cl was coupled to the bioreactor and enabled product removal by continuously recirculating the unfiltered broth through the ISPR unit. This led to a cumulative perillic acid concentration of 187 mM (31 g/L) after 7 days, which represents the highest product concentration achieved in a microbial monoterpene oxyfunctionalization so far. The ISPR approach reduced the further downstream processing steps needed which yielded a 93% pure product with a loss of 2%.

Keywords
Anion exchange resin; In situ product recovery; Integrated bioprocess; Limonene; Perillic acid; Product inhibition
First Page Preview
Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Process Biochemistry - Volume 44, Issue 7, July 2009, Pages 764–771
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us