fulltext.study @t Gmail

Optimization and evaluation of acetylcholine esterase immobilization on ceramic packing using response surface methodology

Paper ID Volume ID Publish Year Pages File Format Full-Text
35213 45081 2010 7 PDF Available
Title
Optimization and evaluation of acetylcholine esterase immobilization on ceramic packing using response surface methodology
Abstract

In the present attempt a method for the immobilization of acetylcholine esterase (AChE) was developed. In this method, the enzyme was immobilized onto a ceramic cylinder support using a sol–gel–multiwall carbon nanotube (MWCNT) composite. Response surface methodology (RSM) was used for the design and analysis of immobilization experiments. Quadratic mathematical model equations were derived for the prediction of enzyme activity. Then the effects on enzyme activity at 30, 40 and 50 min after process initiation of varying each of two parameters over five levels were investigated. These parameters were the AChE:MWCNT ratio (X1), and AChE–MWCNT:sol–gel ratio (X2). The optimum values of X1 and X2 for the immobilization of AChE on ceramic packing were found to be 1.07 and 0.43, respectively. Using these optimum parameters it was shown that enzyme immobilization with MWCNTs and sol–gel was more effective than immobilization with sol–gel or graphite and sol–gel. Scanning electron microscopic (SEM) images revealed a porous surface comprised of MWCNT–AChE encapsulated in sol–gel. Furthermore, the system was highly reproducible with standard deviations after three successive assays of 1.88%, 2.11% and 2.13% at 30, 40 and 50 min after process initiation, respectively.

Keywords
Optimization; Acetylcholine esterase; Enzyme immobilization; Sol–gel; Multiwall carbon nanotube; Response surface methodology
First Page Preview
Optimization and evaluation of acetylcholine esterase immobilization on ceramic packing using response surface methodology
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Process Biochemistry - Volume 45, Issue 1, January 2010, Pages 81–87
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us