fulltext.study @t Gmail

Aqueous two-phase extraction of 2,3-butanediol from fermentation broths using an ethanol/ammonium sulfate system

Paper ID Volume ID Publish Year Pages File Format Full-Text
35678 45101 2010 7 PDF Available
Title
Aqueous two-phase extraction of 2,3-butanediol from fermentation broths using an ethanol/ammonium sulfate system
Abstract

Separation of 2,3-butanediol from the fermentation broth is a difficult task that has become a bottleneck in industrial production. Aqueous two-phase systems composed of hydrophilic solvents and inorganic salts could be used to extract 2,3-butanediol from fermentation broth. The ethanol/ammonium sulfate system was investigated in detail, including phase diagram, effect of phase composition on partition, removal of cells and biomacromolecules from the broths and recycling of ammonium sulfate. The highest partition coefficient (7.10) and recovery of 2,3-butanediol (91.7%) were obtained by a system composed of 32% (w/w) ethanol and 16% (w/w) ammonium sulfate. The maximum selective coefficient of 2,3-butanediol to glucose was 30.74 in the experimental range. In addition, cells and proteins could be simultaneously removed from the fermentation broth. The removal ratio of cells and proteins reached 99.7% and 91.2%, respectively. The recovery of ammonium sulfate in the bottom phase reached 97.14% when two volumes of methanol were added to the salt-rich phase.

Keywords
2,3-Butanediol; Aqueous two-phase extraction; Partition coefficient; Recovery; Fermentation
First Page Preview
Aqueous two-phase extraction of 2,3-butanediol from fermentation broths using an ethanol/ammonium sulfate system
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Process Biochemistry - Volume 45, Issue 5, May 2010, Pages 731–737
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us