fulltext.study @t Gmail

Purification and characterization of an extremely dimethylsulfoxide tolerant esterase from a salt-tolerant Bacillus species isolated from the marine environment of the Sundarbans

Paper ID Volume ID Publish Year Pages File Format Full-Text
35892 45113 2007 8 PDF Available
Title
Purification and characterization of an extremely dimethylsulfoxide tolerant esterase from a salt-tolerant Bacillus species isolated from the marine environment of the Sundarbans
Abstract

A Bacillus sp. isolated from the Sundarbans region of the Bay of Bengal (NCBI GenBank Accession no. AY723697) which can tolerate 10% (w/v) NaCl, produces esterase optimally in Marine Broth 2216 medium containing 1% (w/v) NaCl. The enzyme was purified 42.7-fold with 6.4% recovery, (specific activity 569.2 U/mg protein) by ammonium sulphate precipitation followed by anion and cation exchange chromatography. The serine type esterolytic enzyme has a molecular weight of 35.0 kDa and is denatured into polypeptides of molecular weights 20 kDa and 15 kDa. The esterase was most active at pH 8.0, the pH of the seawater at the site of collection and is stable in the pH range 6.0–9.0. The optimum temperature of activity of this esterase is 45 °C and the enzyme is very stable after 1 h pre-incubation at 50 °C. Our esterase shows about 100% activity when incubated with 1 M NaCl, the activity drops to about 50% when incubated with 2.5 M sodium chloride and the enzyme is completely inactivated when 4 M NaCl is present during reaction. The esterase is almost inactivated by Ca2+, Hg2+ and Fe3+ ions, reducing agents and detergent. Interestingly, Co2+, a known inhibitor of many enzymes, preserved 70% of the activity of this esterase. Specific activity of the esterase increases more than twofold in the presence of water-miscible organic solvents as compared to that in aqueous buffer. When incubated for a period of 10 days in the presence of 30–70% dimethylsufoxide (DMSO), the specific activity increased by approximately two–threefold compared to the enzyme in aqueous buffer throughout the period of study. Specific activity between 1283 and 525 U/mg was maintained by our enzyme when incubated with 50% DMSO for 10 days. The enzyme was most active on p-nitrophenyl acetate, ethyl acetate, alpha isomer of naphthyl acetate but shows relatively lesser activity towards triglycerides of fatty acids. Certain characteristics, such as molecular weight, effects of NaCl, metal ions (Zn2+ and Mg2+) and reactivity towards para-nitrophenyl and aliphatic esters were strikingly similar to already described marine bacterial derived esterases. Extreme stability in DMSO could make this enzyme a potential immobilized biocatalyst for application in non-aqueous based continuous bioprocesses. Higher specific activity and purification factor, better thermo tolerance and solvent stability would make our enzyme more attractive for biotechnological applications than the marine microbial derived esterases described so far.

Keywords
Esterase; Marine; Enzymes; Bacillus; Solvent-tolerant; Sundarbans
First Page Preview
Purification and characterization of an extremely dimethylsulfoxide tolerant esterase from a salt-tolerant Bacillus species isolated from the marine environment of the Sundarbans
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Process Biochemistry - Volume 42, Issue 12, December 2007, Pages 1571–1578
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us