fulltext.study @t Gmail

Biodegradability and mechanical properties of polycaprolactone composites encapsulating phosphate-solubilizing bacterium Bacillus sp. PG01

Paper ID Volume ID Publish Year Pages File Format Full-Text
36024 45118 2007 7 PDF Available
Title
Biodegradability and mechanical properties of polycaprolactone composites encapsulating phosphate-solubilizing bacterium Bacillus sp. PG01
Abstract

This study examined the feasibility of using polycaprolactone (PCL) and its composites (with starch and/or clay) in encapsulating cells of phosphate-solubilizing bacteria (PSB) for the development of biodegradable and “controlled-release” bacterial fertilizer. The PSB used in this work was an indigenous Bacillus sp. PG01 isolate. The results show that the PG01 strain was able to degrade all the cell-loaded capsules made of PCL and PCL composites, resulting in a continual cell release. Morphology observation indicates that severe disruption of the capsule structure occurred after incubation for 15–20 days. The biodegradability of the capsules decreased in the order of PCL/starch (20 wt%) > PCL/starch (20 wt%)/cay (7 wt%) > PCL alone > PCL/clay (7 wt%). Similar trends were also observed for the decrease in tensile strength and elongation at break, suggesting strong connections between biodegradability and the mechanical properties. Addition of starch appeared to enhance the biodegradability of the capsules, whereas the clay-blended composites were less biodegradable. The amount and rate of cell release from cell-encapsulated PCL-based capsules were positively dependent on the biodegradability and on the decrease in the mechanical strength. Nevertheless, the pattern of cell release was quite similar for all types of capsules. The outcome of this work seems to suggest that by proper manipulation of composite compositions, the controlled release of the bacterial fertilizer (i.e., Bacillus sp. PG01 cells) might be achievable.

Keywords
Bacterial fertilizer; Biodegradable material; Clay; Composite; Controlled release; Phosphate-solubilizing bacteria; Polycaprolactone; Starch
First Page Preview
Biodegradability and mechanical properties of polycaprolactone composites encapsulating phosphate-solubilizing bacterium Bacillus sp. PG01
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Process Biochemistry - Volume 42, Issue 4, April 2007, Pages 669–675
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us