fulltext.study @t Gmail

Development of an empirical model for domestic wastewater treatment by biological aerated filter

Paper ID Volume ID Publish Year Pages File Format Full-Text
36602 45138 2006 5 PDF Available
Title
Development of an empirical model for domestic wastewater treatment by biological aerated filter
Abstract

An empirical model for wastewater treatment by biological aerated filters (BAF) was developed in the study, which relates influent soluble chemical oxygen demand (sCOD) to effluent sCOD and medium bed height in order to simply engineering design and verify experimentally the suitability of this model and ascertain the relationship between the constant values calculated with the model and reactor performance. The theoretical model was based on design of contact oxidation process and conventional biofilter because these fixed-film processes show similar flow pattern. Firstly, the two parallel BAF systems packed with lava medium and expanded clay medium, respectively, were run for actual domestic wastewater at different hydraulic loading rates during the experiment. A great deal of data was then used to the empirical model, which was based on a first-order reaction, to calculate the empirical values of n (medium constant) and K (overall process constant). The experimental results show that the treatment efficiency of lava medium exceed to that of expanded clay medium, which just conform to what the model predict, the higher value of K the greater efficiency of sCOD removal, and the lower value of n the greater variation of sCOD removal indicating a poor resistance to shock loading. Next, the effect of suspended solid (SS) on model was estimated by simulated domestic wastewater to verify its feasibility.

Keywords
Biological aerated filter (BAF); Soluble chemical oxygen demand (sCOD); Empirical values of n and K
First Page Preview
Development of an empirical model for domestic wastewater treatment by biological aerated filter
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Process Biochemistry - Volume 41, Issue 4, April 2006, Pages 778–782
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us