fulltext.study @t Gmail

Fast separation of bromelain by polyacrylic acid-bound iron oxide magnetic nanoparticles

Paper ID Volume ID Publish Year Pages File Format Full-Text
36762 45146 2004 5 PDF Available
Title
Fast separation of bromelain by polyacrylic acid-bound iron oxide magnetic nanoparticles
Abstract

The adsorption of bromelain from an aqueous solution by polyacrylic acid (PAA)-bound iron oxide magnetic nanoparticles was studied. The magnetic composite nanoparticles were shown to be efficient for the separation of bromelain. Except at pH <3, the adsorption of bromelain increased with the decrease in solution pH and reached almost 100% at pH 3–5. The adsorbed bromelain could be desorbed by the addition of KCl and complete desorption was achieved at pH 7 when [KCl]>0.6 M. The adsorption behaviour followed the Langmuir isotherm with a maximum adsorption amount of 0.476 mg/mg and a Langmuir adsorption equilibrium constant of 58.4 ml/mg at pH 4 and 0.1 M phosphate. In addition, it was notable that both the adsorption and desorption of bromelain were quite fast and could be completed in about 1 min due to the absence of internal diffusion resistance. Bromelain retained 87.4% activity after adsorption/desorption.

Keywords
Adsorption; Bromelain; Magnetic; Nanoparticles; Polyacrylic acid
First Page Preview
Fast separation of bromelain by polyacrylic acid-bound iron oxide magnetic nanoparticles
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Process Biochemistry - Volume 39, Issue 12, 29 October 2004, Pages 2207–2211
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us