fulltext.study @t Gmail

Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies

Paper ID Volume ID Publish Year Pages File Format Full-Text
37059 45304 2012 9 PDF Available
Title
Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies
Abstract

Cellulose waste biomass is the most attractive substrate for ‘biorefinery strategies’ producing high-value products (e.g. fuels or plastics) by fermentation. However, traditional biomass bioconversions are economically inefficient multistep processes. Thus far, no microorganisms able to perform single-step fermentation into products (consolidated bioprocessing; CBP) have been isolated. Metabolic engineering is currently employed to develop recombinant microorganisms suitable for CBP. The heterologous expression of extracellular proteins (e.g. cellulases or hemicellulases) is the key feature of recombinant cellulolytic strategies, conferring cellulolytic ability to microorganisms exhibiting high product yields and titers. Although more molecular tools are becoming available, efficient heterologous expression of secreted proteins is still a challenge. The present review summarizes both bottlenecks and solutions of organism engineering for biomass biorefinery strategies.

First Page Preview
Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: - Volume 30, Issue 2, February 2012, Pages 111–119
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us