fulltext.study @t Gmail

Computational design of protein–ligand interfaces: potential in therapeutic development

Paper ID Volume ID Publish Year Pages File Format Full-Text
37222 45325 2011 8 PDF Available
Title
Computational design of protein–ligand interfaces: potential in therapeutic development
Abstract

Computational design of protein–ligand interfaces finds optimal amino acid sequences within a small-molecule binding site of a protein for tight binding of a specific small molecule. It requires a search algorithm that can rapidly sample the vast sequence and conformational space, and a scoring function that can identify low energy designs. This review focuses on recent advances in computational design methods and their application to protein–small molecule binding sites. Strategies for increasing affinity, altering specificity, creating broad-spectrum binding, and building novel enzymes from scratch are described. Future prospects for applications in drug development are discussed, including limitations that will need to be overcome to achieve computational design of protein therapeutics with novel modes of action.

First Page Preview
Computational design of protein–ligand interfaces: potential in therapeutic development
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: - Volume 29, Issue 4, April 2011, Pages 159–166
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us