fulltext.study @t Gmail

Two phase partitioning and collagen hydrolysis of bromelain from pineapple peel Nang Lae cultivar

Paper ID Volume ID Publish Year Pages File Format Full-Text
3892 197 2010 7 PDF Available
Title
Two phase partitioning and collagen hydrolysis of bromelain from pineapple peel Nang Lae cultivar
Abstract

Extraction of bromelain from pineapple peel (Nang Lae cultv.) using aqueous two phase system (ATPS) was optimized. Some biochemical properties including collagen hydrolysis were also investigated. Bromelain predominantly partitioned to the polyethylene glycol (PEG)-rich phase. The highest enzyme activity recovery (113.54%) and purification fold (2.23) were presented in the top phase of 15% PEG2000–14% MgSO4. Protein pattern and activity staining showed the molecular weight (MW) of bromelain to be about 29 kDa. The extracted bromelain showed the highest relative activity at pH 7.0 and 55 °C. Its activity was decreased continuously by increasing NaCl concentration (up to 1.5% (w/v)). The bromelain extract was applied to hydrolyze the skin collagen of beef and giant catfish (0–0.3 units). The β, α1, α2 of giant catfish skin collagen extensively degraded into small peptides when treated with 0.02 units of the bromelain extract. Bovine collagen was hydrolyzed using higher bromelain up to 0.18 units. This study showed the ATPS can be employed to partially purify bromelain from Nang Lae pineapple peel and the enzyme effectively hydrolyzed the collagens.

Keywords
Aqueous two phase; Bromelain; Pineapple peel; Collagen hydrolysis; Nang Lae cultivar
First Page Preview
Two phase partitioning and collagen hydrolysis of bromelain from pineapple peel Nang Lae cultivar
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biochemical Engineering Journal - Volume 52, Issues 2–3, 15 November 2010, Pages 205–211
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us