fulltext.study @t Gmail

Biomimetic alkane oxidation by iodosylbenzene and iodobenzene diacetate catalyzed by a new manganese porphyrin: Water effect

Paper ID Volume ID Publish Year Pages File Format Full-Text
39117 45807 2015 9 PDF Available
Title
Biomimetic alkane oxidation by iodosylbenzene and iodobenzene diacetate catalyzed by a new manganese porphyrin: Water effect
Abstract

•Synthesis of a novel β-brominated catalyst derived from a non-symmetric porphyrin.•Water improve product yield in the cyclohexane oxidation by PhIO or PhI(OAc)2.•Stability of β-brominated catalyst toward oxidative degradation in PhI(OAc)2 systems.

This work describes the synthesis and characterization of the novel third-generation catalyst 5,10-(3,5-bromo,4-aminophenyl)-15,20-(phenyl)-2,3,7,8,12,13,17,18-octabromoporphyrinatomanganese(III) chloride, cis-[MnIIIBr12DAPDPP]Cl, and compares the catalytic activity of this compound with the catalytic activity of the first- and second-generation manganese porphyrins [MnIIITPP]Cl and cis-[MnIIIDAPDPP]Cl, respectively, in cyclohexane, adamantane and n-hexane, oxidation by iodosylbenzene (PhIO) or iodobenzene diacetate (PhI(OAc)2). This work also investigates how addition of water and imidazole influences the catalytic systems in the adamantane and cyclohexane oxidation. In the absence of water and imidazole, cis-[MnIIIBr12DAPDPP]Cl leads to higher product yields as compared with [MnIIITPP]Cl and cis-[MnIIIDAPDPP]Cl in cyclohexane oxidation. The third-generation (β-octabrominated) cis-[MnIIIBr12DAPDPP]Cl was not fully destroyed in reactions with PhI(OAc)2 as oxidant. In the presence of imidazole, [MnIIITPP]Cl and cis-[MnIIIDAPDPP]Cl give superior cyclohexanol yields as compared with cis-[MnIIIBr12DAPDPP]Cl. Addition of water during adamantane oxidation by PhI(OAc)2 increases 1-adamantanol yield. As for cyclohexane oxidation by PhIO or PhI(OAc)2, the presence of water raises product yields and diminishes catalyst destruction, especially in the case of cis-[MnIIIDAPDPP]Cl. The presence of water in systems employing PhI(OAc)2 as oxidant affords higher product yields as compared with systems that use PhIO as oxidant.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (84 K)Download as PowerPoint slide

Keywords
Manganese porphyrins; Alkanes oxidation; Water as additive; Iodobenzene diacetate
First Page Preview
Biomimetic alkane oxidation by iodosylbenzene and iodobenzene diacetate catalyzed by a new manganese porphyrin: Water effect
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis A: General - Volume 498, 5 June 2015, Pages 54–62
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us