fulltext.study @t Gmail

Influence of internal diffusion on selective hydrogenation of 4-carboxybenzaldehyde over palladium catalysts supported on carbon nanofiber coated monolith

Paper ID Volume ID Publish Year Pages File Format Full-Text
39135 45807 2015 8 PDF Available
Title
Influence of internal diffusion on selective hydrogenation of 4-carboxybenzaldehyde over palladium catalysts supported on carbon nanofiber coated monolith
Abstract

•Pd/CNF/TiO2/monolith highly selective for partial hydrogenation of 4-CBA.•Superior performance achieved by minimizing internal concentration gradients.•CNF/TiO2/monolith applied as a fixed bed outperforms slurry catalysts.

In this study, a macro-structured Pd catalyst supported on carbon nanofiber coated on cordierite monolith (Pd/CNF/TiO2/monolith) was employed for hydrogenation of 4-CBA. The effect of mass transfer on the catalyst performance was studied experimentally and the results are described using a simple kinetic model. The results were compared to Pd catalysts supported on activated carbon (Pd/AC) and on carbon nanofibers aggregates (Pd/CNF). Catalytic performance of the Pd/CNF/TiO2/monolith is similar to Pd/CNF and the Pd/AC with particles as small as 50 μm (Pd/AC50), whereas Pd/AC with larger support particles revealed a lower activity per Pd active surface site, due to internal mass transfer limitation. Also the selectivity to the intermediate hydrogenation product (4-HMBA), versus deep hydrogenation to p-TA, is clearly affected by internal mass transfer. Pd/AC with large particles (3000 μm) achieves a maximum yield to the intermediate product of only 35%, whereas all the other catalysts achieve typically 70%. Remarkably, the conversion level at which the maximum yield of the intermediate product is achieved is highest for the Pd/CNF/TiO2/monolith. This advantage is assigned to superior internal mass transfer properties, thanks to high porosity, low tortuosity and short diffusion length of the CNF layer. Clearly, the CNF/TiO2/monolith applied as a fixed bed outperforms slurry phase catalysts, abandoning the need of a filtration section.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (152 K)Download as PowerPoint slide

Keywords
Carbon nanofiber; Monolith; Structured catalyst; 4-Carboxybenzaldehyde hydrogenation; Internal diffusion
First Page Preview
Influence of internal diffusion on selective hydrogenation of 4-carboxybenzaldehyde over palladium catalysts supported on carbon nanofiber coated monolith
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis A: General - Volume 498, 5 June 2015, Pages 222–229
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis