fulltext.study @t Gmail

Catalytic decomposition of 1,3-diphenoxybenzene to monomeric cyclic compounds over palladium catalysts supported on acidic activated carbon aerogels

Paper ID Volume ID Publish Year Pages File Format Full-Text
40519 45857 2013 8 PDF Available
Title
Catalytic decomposition of 1,3-diphenoxybenzene to monomeric cyclic compounds over palladium catalysts supported on acidic activated carbon aerogels
Abstract

Activated carbon aerogel (ACA) was prepared by a chemical activation of carbon aerogel using phosphoric acid (H3PO4). Activated carbon aerogel bearing sulfonic acid (ACA-SO3H), Cs2.5H0.5PW12O40-impregnated activated carbon aerogel (Cs2.5H0.5PW12O40/ACA), and Cs2.5H0.5PW12O40-impregnated activated carbon aerogel bearing sulfonic acid (Cs2.5H0.5PW12O40/ACA-SO3H) were prepared in order to provide acid sites to ACA. Palladium catalysts were then supported on ACA, ACA-SO3H, Cs2.5H0.5PW12O40/ACA, and Cs2.5H0.5PW12O40/ACA-SO3H by an incipient wetness impregnation method. The prepared Pd/ACA, Pd/ACA-SO3H, Pd/Cs2.5H0.5PW12O40/ACA, and Pd/Cs2.5H0.5PW12O40/ACA-SO3H catalysts were applied to the decomposition of 1,3-diphenoxybenzene. 1,3-Diphenoxybenzene was used as a trimeric lignin model compound for representing C-O bond in lignin. Cyclohexanol, benzene, and phenol were mainly produced by the decomposition of 1,3-diphenoxybenzene. 4-Phenoxyphenol was also produced as an intermediate by the decomposition of 1,3-diphenoxybenzene. Conversion of 1,3-diphenoxybenzene and total yield for main products (cyclohexanol, benzene, and phenol) increased with increasing acidity of the catalysts. Among the catalysts tested, Pd/Cs2.5H0.5PW12O40/ACA-SO3H with the largest acidity showed the highest conversion of 1,3-diphenoxybenzene and total yield for main products. Pd/Cs2.5H0.5PW12O40/ACA-SO3H also served as a stable and reusable catalyst in the decomposition of 1,3-diphenoxybenzene.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (90 K)Download as PowerPoint slideHighlights► Pd catalysts supported on acidic ACAs (activated carbon aerogels) were prepared. ► Catalytic decomposition of 1,3-diphenoxybenzene was conducted. ► Acidity of the catalysts played an important role in the reaction. ► Total yield for monomeric cyclic compounds increased with increasing catalyst acidity.

Keywords
Acidic activated carbon aerogel; Heteropolyacid; Pd catalyst; Lignin decomposition; 1,3-Diphenoxybenzene
First Page Preview
Catalytic decomposition of 1,3-diphenoxybenzene to monomeric cyclic compounds over palladium catalysts supported on acidic activated carbon aerogels
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis A: General - Volume 456, 10 April 2013, Pages 59–66
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us