fulltext.study @t Gmail

The interaction mechanism of CO2 with CH3 and H on Cu (1 1 1) surface in synthesis of acetic acid from CH4/CO2: A DFT study

Paper ID Volume ID Publish Year Pages File Format Full-Text
40670 45862 2012 9 PDF Available
Title
The interaction mechanism of CO2 with CH3 and H on Cu (1 1 1) surface in synthesis of acetic acid from CH4/CO2: A DFT study
Abstract

The interaction mechanisms of CO2 with CH3 and H on Cu(1 1 1) surface in synthesis of acetic acid from CH4/CO2 are systematically investigated by the first-principle DFT–GGA calculations. Four possible reaction pathways are proposed, and the detailed mechanisms and kinetics are discussed. Our results show that all products are formed by gaseous CO2 and adsorbed CH3 and H through the Eley–Rideal (E–R) mechanism. It is found that the values of the activation barrier for four different pathways are in the order of CH3COO-Cu < HCOO-Cu < HOOC-Cu < CH3OCO-Cu, suggesting that CO2 insertion into CuCH3 bond to form CH3COO-Cu is the most advantageous in dynamics among all four reaction pathways, and the corresponding activation barrier of the rate-controlled step is 85.2 kJ mol−1. The insertion of CO2 into CuH bond to form HCOO-Cu is secondly preferential pathway favored in dynamics. Therefore, H3CCOO is the main product, HCOO is a primary side product, and H3COCO are not obtained as it is inhibited by dynamics in comparison with other pathways. Above calculated results are in accordance with the experimental results, which can provide a new theoretical guidance for the direct synthesis of oxygenated compounds from CH4 and CO2.

Graphical abstract.Figure optionsDownload full-size imageDownload high-quality image (143 K)Download as PowerPoint slideHighlights► The interaction mechanisms of CO2 with CH3 and H on Cu(1 1 1) surface are studied. ► All products are formed via the Eley–Rideal mechanism with gaseous CO2. ► CH3COO is preferably formed both kinetically and thermodynamically. ► HCOO is a primary side product. ► CH3OCO formation is not supported both kinetically and thermodynamically.

Keywords
Carbon dioxide; Acetic acid; Hydrogen; Methyl; Density functional theory
First Page Preview
The interaction mechanism of CO2 with CH3 and H on Cu (1 1 1) surface in synthesis of acetic acid from CH4/CO2: A DFT study
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis A: General - Volumes 443–444, 7 November 2012, Pages 50–58
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis