fulltext.study @t Gmail

Effect of the distribution of adsorbed proteins on cellular adhesion behaviors using surfaces of nanoscale phase-reversed amphiphilic block copolymers

Paper ID Volume ID Publish Year Pages File Format Full-Text
408 42 2014 8 PDF Available
Title
Effect of the distribution of adsorbed proteins on cellular adhesion behaviors using surfaces of nanoscale phase-reversed amphiphilic block copolymers
Abstract

In order to create suitable biocompatible materials for various tissue engineering applications, it is important to be able to understand protein adsorption and cell adhesion behaviors on the material’s surfaces. It is known that the nanoscale distribution of adsorbed proteins affects cell adhesion behaviors. However, how nanoscale structures affect cell adhesion behaviors is still unclear. Therefore, in this study, we investigate the effect of the distribution of adsorbed proteins by the phase reversal of amphiphilic block copolymers composed of protein-non-adsorptive poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and protein-adsorptive poly(3-methacryloyloxy propyltris(trimethylsilyloxy) silane) (PMPTSSi) on cell adhesion behaviors. The nanodomain structures of phase-separated block copolymers were successfully confirmed using transmission electron microscopy and atomic force microscopy. Surfaces that had PMPC dot-like domains (23 ± 4 nm) and ones that had PMPTSSi dot-like domains (25 ± 6 nm) were made. From protein adsorption and L929 cell adhesion measurements, it was found that even on surfaces with equal quantities of protein adsorption, the number of cells on surfaces with PMPC dot-like domains was larger than those with PMPTSSi dot-like domains. This suggests that the simple phase-reversal of the distribution of adsorbed proteins can be used to affect cell adhesion behaviors for designing biomaterial surfaces for tissue engineering applications.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (160 K)Download as PowerPoint slide

Keywords
Self-assembly; Phosphorylcholine; Cell adhesion; Protein adsorption; AFM (atomic force microscopy)
First Page Preview
Effect of the distribution of adsorbed proteins on cellular adhesion behaviors using surfaces of nanoscale phase-reversed amphiphilic block copolymers
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 10, Issue 7, July 2014, Pages 2988–2995
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us