fulltext.study @t Gmail

Influence of reactor material and activated carbon on the thermocatalytic decomposition of methane for hydrogen production

Paper ID Volume ID Publish Year Pages File Format Full-Text
41838 45901 2010 8 PDF Available
Title
Influence of reactor material and activated carbon on the thermocatalytic decomposition of methane for hydrogen production
Abstract

A series of experiments was conducted to study the catalytic effects of the stainless-steel reactor material and activated carbon (AC) on the decomposition of methane for production of hydrogen. Additionally, the effects of the methane flow rate, amount of AC, decomposition temperature, and particle size on methane conversion, initial decomposition rate and deactivation time were determined in a fixed bed reactor. The reactor wall seriously affected the methane decomposition when the temperature was higher than 850 °C. The activity of the AC increased with the increase in methane decomposition temperature (775–850 °C), and changing the particle size (135–1095 μm) did not have a significant effect. The initial rate of methane decomposition showed an inverse and non-linear relationship with increasing weight of AC due to the dilution of methane by the produced hydrogen. However, the method of changing the volume hourly space velocity, i.e., by changing either the AC weight at a constant methane flow rate or the methane flow rate at a constant AC weight, did not cause differences in the measured AC initial activity. Various measurements on the AC at the beginning and end of the experiment revealed that methane decomposition occurs mainly within AC micropores.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (69 K)Download as PowerPoint slideResearch highlights▶ Stainless-steel reactor seriously affects decomposition at a temperature >850 °C. ▶ Changing the AC particle size (135–1095 μm) did not have a significant effect. ▶ The reaction results obtained by increasing the VHSV using two different methods indicated that the methods did not affect the measured AC initial activity. ▶ Various measurements revealed that decomposition occurs mainly within AC micropores.

Keywords
Catalytic methane decomposition; Hydrogen production; Activated carbon; Pilot plant
First Page Preview
Influence of reactor material and activated carbon on the thermocatalytic decomposition of methane for hydrogen production
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis A: General - Volume 388, Issues 1–2, 20 November 2010, Pages 232–239
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us