fulltext.study @t Gmail

Development of an arginine-based cationic hydrogel platform: Synthesis, characterization and biomedical applications

Paper ID Volume ID Publish Year Pages File Format Full-Text
419 42 2014 10 PDF Available
Title
Development of an arginine-based cationic hydrogel platform: Synthesis, characterization and biomedical applications
Abstract

A series of biodegradable and biocompatible cationic hybrid hydrogels was developed from water-soluble arginine-based unsaturated polymer (Arg-AG) and poly(ethylene glycol) diacrylate (PEG-DA) by a photocrosslinking method. The physicochemical, mechanical and biological properties of these hydrogels were intensively examined. The hydrogels were characterized in terms of equilibrium swelling ratio (Qeq), compression modulus and interior morphology. The effects of the chemical structure of the two Arg-AG precursors and the feed ratio of these precursors on the properties of resulting hybrid hydrogels were investigated. The crosslinking density and mechanical strength of the hybrid hydrogels increased with an increase in allylglycine (AG) content in the Arg-AG precursor, as the gelation efficiency (Gf) increased from 80% to 90%, but the swelling and pore size of the hybrid hydrogels decreased as the equilibrium swelling weight (Qeq) decreased from 1890% to 1330% and the pore size from 28 to 22 μm. The short-term in vitro biodegradation properties of hydrogels were investigated as a function of Arg-AG chemical structures and enzymes. Hybrid hydrogels showed faster biodegradation in an enzyme solution than in a phosphate-buffered saline solution. Bovine serum albumin and insulin release profiles indicated that this cationic hydrogel system could significantly improve the sustained release of the negatively charged proteins. The cellular response of the hybrid hydrogels was preliminarily evaluated by cell attachment, encapsulation and proliferation tests using live–dead and MTT assay. The results showed that the hybrid hydrogels supported cell attachment well and were nontoxic to the cells.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (62 K)Download as PowerPoint slide

Keywords
Poly(ester amide)s; Amino acids; Hydrogel; Biodegradable
First Page Preview
Development of an arginine-based cationic hydrogel platform: Synthesis, characterization and biomedical applications
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 10, Issue 7, July 2014, Pages 3098–3107
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us