fulltext.study @t Gmail

An activity and XANES study of Mn-promoted, Fe-based Fischer–Tropsch catalysts

Paper ID Volume ID Publish Year Pages File Format Full-Text
42105 45911 2010 5 PDF Available
An activity and XANES study of Mn-promoted, Fe-based Fischer–Tropsch catalysts

Iron-based Fischer–Tropsch (FT) catalysts with a mol-based formula of (100 − x)Fe/xMn/5Cu/17SiO2 (x ≤ 20), were prepared using co-precipitation methods. The calcined catalysts were first activated in H2 for 12 h, then reacted in flowing syngas at 1.8 atm, 280 °C, and a 2:1 ratio of H2:CO. The fresh and reacted catalysts were characterized using X-ray absorption near-edge structure (XANES) to determine changes in the oxidation state and the atomic-level environment of the Fe and Mn atoms. XANES spectra of the fresh calcined and reacted catalyst were taken using the K edges of Fe (7.112 KeV) and Mn (6.540 KeV) for various Mn-metal loadings (x = 0, 5, 20). The FT activity significantly increased with Mn promotion, indicating significant Fe–Mn interactions. The least squares fitting of the reacted catalyst shows that higher Mn loadings lead to decreased FexC concentration and increased Fe3O4 concentration. Principal Component Analysis (PCA) of Fe indicates that the Fe2O3, Fe3O4, θ-Fe3C phases were present in either the calcined or reacted catalyst. One additional Fe-containing phase was present in the catalyst but was not identified using the Fe standards. The PCA of Mn showed the presence of Mn2O3, as well as one additional Mn-containing phase. The Mn XANES of the reacted 95Fe5Mn and 80Fe20Mn catalysts show that Mn was a mixture of the 2+ and 3+ oxidation states. The average oxidation state of Mn in the reacted 95Fe5Mn catalyst was 2.24 ± 0.07, consistent with the formation of an additional phase, identified as (Fe1−yMny)3O4. FEFF calculations have shown relatively good agreement for Mn-substitution of octahedral Fe-sites in Fe3O4 (28664-ICSD), specifically in the pre-edge region; corresponding to the composition (Fe1−yMny)3O4. Fe-based FT catalysts deactivate when carbon deposition occurs on larger iron carbide clusters. This study has shown less carbon deposition, FexC formation, and higher CO hydrogenation activity with the Mn-promoted catalysts. This indicates that (Fe1−yMny)3O4 was responsible for the formation of smaller clusters of FexC, which were more active for CO hydrogenation and were less prone to deactivation through carbon deposition.

Graphical abstractXANES spectra for the Fe K-edge of the post-reaction [H2 activated – 1.8 atm, 280 °C, 12 h; syngas reaction – 2:1 H2:CO ratio, 280 °C, 1.8 atm, 6 h] Mn-promoted, Fe-based catalysts. The XANES spectra show a decreased reducibility of Fe (after activation + reaction) with increased Mn-metal promotion. The list is in order of decreasing reducibility (i.e. θ-Fe3C most reduced).Figure optionsDownload full-size imageDownload high-quality image (117 K)Download as PowerPoint slide

Fischer–Tropsch; Iron; Manganese; XANES
First Page Preview
An activity and XANES study of Mn-promoted, Fe-based Fischer–Tropsch catalysts
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis A: General - Volume 375, Issue 1, 26 February 2010, Pages 12–16
, , , , , ,
Physical Sciences and Engineering Chemical Engineering Catalysis