fulltext.study @t Gmail

Surface properties and catalytic behavior of Ru supported on composite La2O3–SiO2 oxides

Paper ID Volume ID Publish Year Pages File Format Full-Text
42265 45918 2009 12 PDF Available
Title
Surface properties and catalytic behavior of Ru supported on composite La2O3–SiO2 oxides
Abstract

Binary La2O3–SiO2 supports were employed to obtain active, stable Ru catalysts with high dispersions for the dry reforming of methane. Supports with 15, 27, 40 and 50 wt.% of La2O3 were prepared by incipient wetness impregnation on SiO2. The Ru loading was 0.6 wt.% for all catalysts. The solids were evaluated in a fixed-bed reactor under differential conditions. Previously, they were reduced at either 673 or 823 K. The most active catalyst was Ru/La2O3(50)–SiO2. All the uncalcined formulations were stable after 100 h on stream.XRD, CO chemisorption, TPR, XPS, ISS and CO adsorption monitored by FTIR were employed to characterize the catalysts and the Ru species. XRD showed the presence of La2Si2O7 with low crystallinity in all the supports. By means of XPS and ISS, the formation of a surface La2Si2O7 phase was suggested for samples containing La2O3 up to 40 wt.%. Higher contents could lead to surface La2O3 particle growth.The TOFCH4TOFCH4 values showed a minimum for the Ru/La2O3(40)–SiO2 solid in agreement with a lower metal–support interaction. The Ru/La2O3(50)–SiO2 catalyst exhibited the highest TOFCH4TOFCH4 for both reduction treatments. The differences in thermal stability of the CO adsorbed species on Ru supported on silica or on binary La2O3–SiO2 supports sustain that the presence of lanthanum influences the metal–support interaction and metal dispersion.

Graphical abstractBinary La2O3–SiO2 supports were employed to obtain active, stable Ru catalysts with high dispersions for the dry reforming of methane. By means of XPS and ISS, the formation of surface La2Si2O7 was suggested for La2O3 loads up to 40 wt.%. Higher contents could lead to surface La2O3 particle growth. This could be the cause of the higher Ru–La interaction in the supported La2O3(50)–SiO2 solid.Figure optionsDownload full-size imageDownload as PowerPoint slide

Keywords
Binary supports; Ru; Hydrogen production; XPS; ISS
First Page Preview
Surface properties and catalytic behavior of Ru supported on composite La2O3–SiO2 oxides
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis A: General - Volume 369, Issues 1–2, 15 November 2009, Pages 15–26
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis