fulltext.study @t Gmail

Enhancement of the O2 or H2 photoproduction rate in a Ce3+/Ce4+–TiO2 system by the TiO2 surface and structure modification

Paper ID Volume ID Publish Year Pages File Format Full-Text
42442 45925 2009 8 PDF Available
Title
Enhancement of the O2 or H2 photoproduction rate in a Ce3+/Ce4+–TiO2 system by the TiO2 surface and structure modification
Abstract

The effect of structural and surface changes in the suspended TiO2 on the dioxygen and dihydrogen evolution rates was studied with the purpose to improve photogenerated charges utilization efficiency for future solar light water splitting systems which use reversible inorganic electron relays. Prepared rutile and anatase catalysts are characterized by N2 adsorption–desorption measurements, X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was discovered that the dioxygen photoproduction rate from the Ce4+-containing TiO2 suspension increased linearly with the rutile specific surface area. A further increase in the O2 generation rate provides a modification of TiO2 surface with Pt. Photodeposition (PD) of Pt resulted in a higher O2 evolution rate than Pt deposition by soft chemical reduction (SCR). The highest photocatalytic activity at pH equal to 0.4 was obtained for 1 wt.% Pt/TiO2 Degussa P25 platinized by PD.In contrast to O2, the H2 photocatalytic production from the Ce3+-containing TiO2 suspension solution was faster over Pt/TiO2 prepared by SCR. Uniform coverage of the TiO2 surface with Pt particles turned out to be more important for the H2 generation than rather for the O2 one. A lower quantum efficiency of the H2 generation associated with the low Ce3+ surface coverage on Pt/TiO2 was attempted to be improved by treating TiO2 surface with inorganic acids. Sulfuric acid increased the rate by 20% while phosphoric and hydrofluoric acids did not. The best photocatalytic dihydrogen production catalyst at pH equal to 1.0 was found to be 1 wt.% Pt/Degussa P25 prepared by SCR and treated with H2SO4. The results demonstrate that the bulk structure (phase composition), morphology (surface area), as well as the surface morphology (Pt distribution) and composition (acid additives) are all important for the O2 and H2 photogeneration in the separate TiO2—suspended based.

Graphical abstractThe O2 photocatalytic generation rate from a Ce4+-containing suspension of rutile TiO2 increases with the increase in the TiO2 surface area and is further enhanced by a TiO2 surface modification via Pt photodeposition. The H2 photogeneration rate from a Ce3+-containing suspension of TiO2 is enhanced by a TiO2 surface modification via chemically reduced Pt and the treatment of catalyst surface by sulfuric acid.Figure optionsDownload full-size imageDownload as PowerPoint slide

Keywords
Photocatalysis; Hydrogen production; Template synthesis; Pt; TiO2; “Shuttle-redox” systems
First Page Preview
Enhancement of the O2 or H2 photoproduction rate in a Ce3+/Ce4+–TiO2 system by the TiO2 surface and structure modification
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis A: General - Volume 367, Issues 1–2, 1 October 2009, Pages 130–137
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us