fulltext.study @t Gmail

The influence of metal loading and activation on mesoporous materials supported nickel phosphide hydrotreating catalysts

Paper ID Volume ID Publish Year Pages File Format Full-Text
42606 45933 2009 7 PDF Available
Title
The influence of metal loading and activation on mesoporous materials supported nickel phosphide hydrotreating catalysts
Abstract

Ordered mesoporous materials (SBA-15 and KIT-6 silica and MFI zeolite) supported nickel phosphide (NixPy) hydrotreating catalysts were prepared by reduction of oxidic precursors with an initial stoichiometric Ni/P ratio of 2 The metal loading (20 and 30 wt.% NixPy) and pretreatment conditions (773 K or 873 K reduction temperature, in situ sulfidation at 723 K) of the precursors were varied. Temperature programmed reduction, in situ XRD, and 31P NMR indicate the formation of metallic nickel then different nickel phosphides (Ni3P, Ni12P5, then Ni2P) in this order upon reduction. The changes in the textural properties of the catalysts compared to their parent supports promote the conclusion that a significant part of the NixPy phases is located inside the mesopores. The catalytic activity (parallel dibenzothiophene hydrodesulfurization and o-methyl aniline hydrodenitrogenation) increases strongly with increasing NixPy loading. The KIT-6 and SBA-15 supported catalysts exhibit higher hydrotreating activities than reference CoMo/Al2O3 and Ni12P5/SiO2 catalysts. In contrast, the catalyst based on a mesoporous MFI support had the lowest hydrotreating activity. This activity trend is explained by the propensity of high-surface area mesoporous silica supports to well disperse metal phosphide particles. The active phase composition of the spent catalysts is in the range of Ni2.0–2.6P1.0S0.4–0.7. This suggests that bulk Ni2P with some sulfur in its surface forms the active phase in the mesopores of SBA-15 and KIT-6.

Graphical abstractPseudo first-order reaction rate constants related to unit catalyst mass for hydrodesulfurization (HDS) of dibenzothiophene (DBT) (left) and hydrodenitrogenation (HDN) of o-methylaniline (OMA) (right) as a function of time-on-stream over commercial CoMo/Al2O3 (a), 20 wt.% nickel phosphide (NiP) containing reference SiO2- (b), mesoporous MFI- (c), SBA-15- (d), KIT-6- (e), and 30 wt.% NiP containing SBA-15- (f) and KIT-6- (g) supported catalysts during simultaneous HDS of DBT and HDN of OMA at 613 K and 30 bar.Figure optionsDownload full-size imageDownload as PowerPoint slide

Keywords
Nickel phosphide; SBA-15; KIT-6; Mesoporous MFI; Hydrodesulfurization; Dibenzothiophene; Hydrodenitrogenation; o-Methyl aniline
First Page Preview
The influence of metal loading and activation on mesoporous materials supported nickel phosphide hydrotreating catalysts
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis A: General - Volume 365, Issue 1, 15 August 2009, Pages 48–54
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us