fulltext.study @t Gmail

Catalytic gasification of biomass model compound in near-critical water

Paper ID Volume ID Publish Year Pages File Format Full-Text
42929 45947 2009 8 PDF Available
Title
Catalytic gasification of biomass model compound in near-critical water
Abstract

Catalytic gasification of biomass in sub- and supercritical water is a promising process for the production of fuel gaseous. In this paper, a batch microreactor has been utilized to study the near-critical water gasification of glucose in the presence of supported and unsupported metal catalysts consisting of Raney-nickel, Raney-cobalt, Raney-copper, carbon-supported ruthenium, and alumina-supported ruthenium. The reaction temperature and pressure were 340–380 °C and 150–250 bar, respectively. Effects of reaction temperature, reaction time, and catalyst loading on the amount of the generated gas as well as its composition were investigated. Results indicated that within our operating conditions, the conversion of glucose was sensitive to temperature but varying the catalyst loading in the range of 30–100 wt% did not significantly affect the conversion, implying that the experiments were mainly conducted at saturated amounts of catalyst. The following catalytic activities for the decomposition of glucose have been observed: Raney-nickel 4200 > Raney-nickel 3202 > ruthenium on alumina and ruthenium on carbon > Raney-copper > Raney-cobalt. However, the relatively small difference in the gas yields obtained by Raney-copper catalyzed reaction and those of Raney-nickel and ruthenium suggested this relatively inexpensive spongy structure of copper metal could be very useful for gasification of biomass in subcritical water environments.

Graphical abstractA batch microreactor has been utilized to study the near-critical water gasification of glucose in the presence of metal catalysts. The reaction temperature and pressure were 340–380 °C and 150–250 bar, respectively. The following catalytic activities have been observed: Raney-nickel 4200 > Raney-nickel 3202 > ruthenium on alumina and ruthenium on carbon > Raney-copper > Raney-cobalt.Figure optionsDownload full-size imageDownload as PowerPoint slide

Keywords
Gasification; Subcritical water; Supercritical water; Biomass; Glucose; Catalyst
First Page Preview
Catalytic gasification of biomass model compound in near-critical water
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis A: General - Volume 358, Issue 1, 30 April 2009, Pages 65–72
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us