fulltext.study @t Gmail

Zinc catalyzed conversion of methanol–methyl iodide to hydrocarbons with increased formation of triptane

Paper ID Volume ID Publish Year Pages File Format Full-Text
43403 45968 2008 6 PDF Available
Title
Zinc catalyzed conversion of methanol–methyl iodide to hydrocarbons with increased formation of triptane
Abstract

At 200 °C under autogeneous pressure, mixtures of methanol and methyl halides are converted with zinc to a mixture of hydrocarbons. The reaction of methanol and methyl iodide mixtures over zinc or zinc oxide gives 2,2,3-trimethylbutane (triptane), a desirable high-octane compound in significant selectivity. As alternative to previously known ZnI2 or ZnBr2/methanol conversion, the present protocol does not require the use of metal halide catalysts. The initial step of the mechanism of conversion methanol/methyl iodide mixtures to hydrocarbons does not involve strongly acidic species. On the basis of the obtained experimental data with both zinc and zinc oxide, which are amphoteric in nature, the intermediacy of a zinc methoxy species is considered to be the key step for the formation of hydrocarbons. The proposed formation of hydrocarbons is considered as a parallel reaction to ethylene oligomerization to aromatic hydrocarbons.

Graphical abstractAt 200 °C under autogeneous pressure, mixtures of methanol and methyl halides are converted with zinc to a mixture of hydrocarbons. The reaction of methanol and methyl iodide mixtures over zinc or zinc oxide gives 2,2,3-trimethylbutane (triptane), a desirable high-octane compound in significant selectivity. The mechanism of these reactions under amphoteric conditions is discussed. Figure optionsDownload full-size imageDownload as PowerPoint slide

Keywords
Methanol; Zinc; Zinc oxide; Methanol to hydrocarbon; Methanol to olefin
First Page Preview
Zinc catalyzed conversion of methanol–methyl iodide to hydrocarbons with increased formation of triptane
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis A: General - Volume 336, Issues 1–2, 1 March 2008, Pages 48–53
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us