fulltext.study @t Gmail

Methane oxidation on Pd supported on high area zirconia catalysts

Paper ID Volume ID Publish Year Pages File Format Full-Text
44271 46011 2006 11 PDF Available
Title
Methane oxidation on Pd supported on high area zirconia catalysts
Abstract

The results presented in this work clearly show that zirconia synthesized by precipitation of zirconyl chloride with NaOH leads to a zirconia with high surface area (224 m2/g), which is relatively stable after high temperature exposure. Pd supported on this high surface area zirconia exhibit higher turnover frequency for methane combustion than when supported on zirconia obtained from zirconyl chloride precipitated with ammonium hydroxide.We also found that when the commercial zirconium hydroxide is subjected to a NaOH reflux treatment, we obtained a zirconia of high and stable surface area (157 m2/g) even after heating it at 700 °C. Pd supported on the Na treated commercially derived support shows the highest dispersion and the highest intrinsic activity than on any of the other preparations studied. The results presented in this paper open up a new venue for obtaining high surface area zirconia using the commercially available hydroxide.This work shows that it is possible to stabilize zirconia using a Na treatment and also obtain high catalytic activity for methane oxidation on Pd stabilized on such support. Kinetic results and the corresponding mechanistic interpretation and the IR results support that the effect is consistent with increasing water support interactions which in term affect the reaction kinetics.

Keywords
Methane; Oxidation; Pd supported catalyst; High area zirconia
First Page Preview
Methane oxidation on Pd supported on high area zirconia catalysts
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis A: General - Volume 298, 10 January 2006, Pages 243–253
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us