fulltext.study @t Gmail

Structural features of La1−xCexNiO3 mixed oxides and performance for the dry reforming of methane

Paper ID Volume ID Publish Year Pages File Format Full-Text
44653 46050 2006 11 PDF Available
Title
Structural features of La1−xCexNiO3 mixed oxides and performance for the dry reforming of methane
Abstract

Mixed oxides La1−xCexNiO3 (x = 0, 0.05, 0.4 and 0.7) have been prepared by the citrate method and tested, after reduction activation, in the CO2 reforming of methane reaction into synthesis gas. The compounds were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), specific surface area measurements, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), transmission electron microscopy (TEM) and temperature-programmed oxidation (TPO). The LaNiO3 perovskite exhibited activity to methane reforming, but suffered a slow deactivation with time-on-stream. Nevertheless, substitution of the A site metal ion with a tetravalent metal cation (Ce) led to an increase in catalytic activity. Moreover, the insertion of Ce increased the stability of the catalysts with respect to the reforming reaction. The La0.95Ce0.05NiO3 catalyst showed the highest activity, with CO2 conversion of 62% at 1023 K. The XRD and TPR analyses confirmed that at high Ce contents, ceria appears as segregated CeO2 phase and interferes with the rate of perovskite structure formation, so that NiO and La2NiO4 are produced. As a consequence of the low solubility of cerium oxide, its insertion in the perovskite structure is also possible in the low Ce-content regions. This low amount of cerium incorporated is responsible not only for the enhancement of catalytic performance of the perovskite after its activation by reduction, but also for the inhibition of carbon formation.

Keywords
Methane reforming reaction; Perovskite-type oxides; Metal catalysts precursors; Crystal structure; Reduction properties
First Page Preview
Structural features of La1−xCexNiO3 mixed oxides and performance for the dry reforming of methane
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis A: General - Volume 311, 1 September 2006, Pages 94–104
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us