fulltext.study @t Gmail

Formation of stable Cu2O from reduction of CuO nanoparticles

Paper ID Volume ID Publish Year Pages File Format Full-Text
44706 46056 2006 5 PDF Available
Title
Formation of stable Cu2O from reduction of CuO nanoparticles
Abstract

In situ time-resolved X-ray diffraction (TR-XRD) using synchrotron radiation has been used to capture the dynamics of the reduction of nanocrystalline CuO using a normal supply of CO gas. Copper(II) oxide nanoparticles 4–16 nm in width, as measured by XRD peak broadening, are synthesized using an aqueous organic-nitrate method and reduced in isothermal and temperature ramping reduction experiments. Temperature-programmed reduction of CuO nanoparticles using a ramping heating profile was observed to result in the sequential reduction process CuO → Cu2O → Cu, with CuO reducing completely to the intermediate Cu2O phase before further reduction to metallic copper. Isothermal reduction experiments at 250 °C show that CuO nanoparticles completely reduce to Cu2O, and this phase remains stable without further reduction with continued exposure to CO. In contrast to what is typically observed in bulk CuO in both isothermal and ramping reduction conditions, nanocrystalline CuO reduces to a stable Cu2O phase rather than forming metallic copper directly. The behavior of the CuO nanoparticles in temperature ramping reducing conditions is controlled by the particle size, with the smaller CuO nanoparticles exhibiting a greater stability and withstanding a higher temperature before their reduction to Cu2O and then to metallic copper nanoparticles.

Keywords
Copper oxide; Nanoparticles; Reduction of oxides; X-ray diffraction
First Page Preview
Formation of stable Cu2O from reduction of CuO nanoparticles
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis A: General - Volume 303, Issue 2, 28 April 2006, Pages 273–277
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us