fulltext.study @t Gmail

Small CuO clusters on CeO2 nanospheres as active species for catalytic N2O decomposition

Paper ID Volume ID Publish Year Pages File Format Full-Text
44861 46375 2015 10 PDF Available
Title
Small CuO clusters on CeO2 nanospheres as active species for catalytic N2O decomposition
Abstract

•CuO/CeO2 catalysts were prepared by impregnation of CeO2 nanospheres.•Synthesized samples are active catalysts in N2O decomposition reaction.•Presence of different Cu species was confirmed by means of various techniques.•Small CuO clusters (less than 5 nm) contribute most to the observed N2O conversions.•Prepared solids show good stability, even in wet or NO containing atmospheres.

High surface area CeO2 nanospheres as an active catalyst support were synthesized using glycothermal approach. Different loadings of copper (4, 6, 10 and 15 wt.%) were supported by wet impregnation method. Prepared materials were characterized by means of TEM, SEM-EDX, XRD, UV-Vis diffuse reflectance, N2 adsorption/desorption, DRIFT and H2-TPR techniques, and tested for the catalytic reaction of nitrous oxide decomposition. The best activity in the N2O degradation was found for the sample containing 10 wt.% of Cu that can be attributed to the highest number of small CuO clusters on the catalyst surface. Further increase of copper content strongly affects the dispersion and leads to the formation of less active segregated CuO phase, which was confirmed by XRD, UV-Vis and H2-TPR results. Accordingly to UV–Vis examination and DRIFT analysis using CO as a probe molecule, all solids contain Cu+1 ions which play a crucial role in the N2O decomposition mechanism. The synthesized catalysts were also tested in wet or NO containing atmospheres, where an inhibiting effect takes place and leads to shifting of conversion profiles to higher temperature by 65 and 10 °C, correspondingly. It was found out that the formation of a new, crystalline CuO·3H2O phase occurs in water vapour containing atmosphere, which can result in catalyst deactivation. However, this effect is fully reversible and the catalyst is able to replenish initial activity in dry atmosphere. Potentiality of CuO/CeO2 materials in catalytic N2O decomposition in industrial processes was confirmed by long-term stability tests performed in the period of 50 h in the presence of inhibiting gas components.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Keywords
N2O decomposition; CuO–CeO2 catalysts; Synergetic effect; Small CuO clusters; CeO2 nanospheres
First Page Preview
Small CuO clusters on CeO2 nanospheres as active species for catalytic N2O decomposition
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis B: Environmental - Volume 163, February 2015, Pages 113–122
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us