fulltext.study @t Gmail

Transformation of polycyclic aromatic hydrocarbons (PAHs) on Fe(III)-modified clay minerals: Role of molecular chemistry and clay surface properties

Paper ID Volume ID Publish Year Pages File Format Full-Text
45060 46395 2014 8 PDF Available
Title
Transformation of polycyclic aromatic hydrocarbons (PAHs) on Fe(III)-modified clay minerals: Role of molecular chemistry and clay surface properties
Abstract

•Reactivity of PAHs on Fe(III)-smectite is highly correlated with their IP values.•Transformation rate of PAHs is related to their interaction with clay surfaces.•Electron-transfer and radical formation are crucial steps for PAHs transformation.•Clay interlayer provides microreactors and stabilizes the radical intermediates.

Clay-driven transformation of polycyclic aromatic hydrocarbons (PAHs) is critically influenced by their molecular structure and clay surface properties. In the present study, several PAHs were selected as model molecules to investigate their potential transformation on Fe(III)-saturated clay minerals under various mineralogical and environmental conditions. Results suggest that the reactivity of PAHs is highly correlated with their ionization potential (IP) values. PAHs with IP lower than a threshold between 7.5 and 7.6 prefer undergoing a one-electron transfer reaction. Otherwise, Fe(III)-smectite is unable to degrade PAHs with IP above it. The electron-transfer process leads to the reduction of Fe(III) to Fe(II) and formation of organic radical cations, which are more stable in clay interlayers than at other clay sites. Subsequent reactions of radical cations with oxygenic species (such as H2O) result in formation of oxygenated products. The surface chemical properties, i.e., the hydration of cations, fraction of Fe(III), layer charge location, and type of ligands, strongly affect the interaction between PAHs and Fe(III), thus modulate the reactivity of surface Fe(III)-species on the clay minerals. This study provides the first direct evidence for clay-catalyzed transformation of PAHs supporting the plausibility of their in situ degradation in soils, and demonstrates that abiotic reactions with surface-bound Fe(III) may affect or even dominate the long-term behavior of PAHs in soils, particularly in the presence of swelling clay minerals.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Keywords
Clay minerals; Polycyclic aromatic hydrocarbons (PAHs); Ionization potential; Electron transfer; Transformation
First Page Preview
Transformation of polycyclic aromatic hydrocarbons (PAHs) on Fe(III)-modified clay minerals: Role of molecular chemistry and clay surface properties
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis B: Environmental - Volumes 154–155, July–August 2014, Pages 238–245
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis