fulltext.study @t Gmail

N2O decomposition on CoOx, CuOx, FeOx or MnOx supported on ZrO2: The effect of zirconia doping with sulfates or K+ on catalytic activity

Paper ID Volume ID Publish Year Pages File Format Full-Text
45104 46396 2016 10 PDF Available
Title
N2O decomposition on CoOx, CuOx, FeOx or MnOx supported on ZrO2: The effect of zirconia doping with sulfates or K+ on catalytic activity
Abstract

•On MeOx/ZrO2 (Me = Co, Cu, Fe, Mn) isolated Men+ are active for N2O decomposition.•The mobility of Men+ oxidation state is a key factor for activity.•The effect of zirconia-doping is to change the mobility of Men+ oxidation state.•Electron-withdrawing sulphates hinders Me(n+1)+O− formation and deN2O activity.•Electron-releasing K+ induces easy formation of Co3+O− and high activity for deN2O.

Zirconia doped with sulfates or K+ were prepared by impregnation with (NH4)2SO4, or KNO3 aqueous solutions. MeOx/ZrO2 and MeOx/doped-ZrO2 catalysts (Me = Co, Cu, Fe or Mn) were prepared by wet impregnation of zirconia and doped-zirconia supports. The effect of doping on MeOx properties was studied by XRD, UV–vis DRS, H2-TPR and FTIR and the influence of doping on the catalytic activity for N2O decomposition was investigated under ideal conditions (N2O in He) and under real reaction conditions (addition of NO, O2, and water vapour to the reactant mixture).Characterization results indicated that all samples contained mainly dispersed Men+ species interacting with the support. In MeOx/sulfated-ZrO2 the doping with electron-withdrawing sulfates stabilized the Men+ oxidation state. In CoOx/K-ZrO2 samples the doping with electron-releasing K+ increased the poly-nuclear CoOx reducibility. FTIR characterization suggested that the electron-donor capacity of Co2+ site had the order CoOx/sulfated-ZrO2 < CoOx/ZrO2 < CoOx/K-ZrO2.Catalytic results showed that dispersed Men+ are the active site for N2O decomposition on MeOx/ZrO2. The “twin peak pattern” of catalytic activity versus tmi d-electron number suggests that formation and stability of the intermediate Me(n+1)+O- surface complex, requiring the mobility of Men+ oxidation state, are key factors for activity. Because the electron-withdrawing sulfates lowered the electron-donor capacity of tmi, hindering the formation of Me(n+1)+O-, the effect of sulfate-doping was to decrease the deN2O activity in MeOx/sulfated-ZrO2. Conversely, because the electron-releasing potassium cation increased electron-donor capacity of Co2+, yielding an easier formation of the intermediate surface complex, the effect of K-doping was to increase the deN2O activity in CoOx/K-ZrO2.From an applied viewpoint, cobalt supported on ZrO2 and K-doped ZrO2 systems, that were affected by reversible inhibitory effect in real reaction conditions, are interesting catalysts for N2O abatement and for simultaneous abatement of N2O and NO with hydrocarbons.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Keywords
N2O decomposition; Transition metal oxide supported on ZrO2; Sulfated-ZrO2; Alkali-doped ZrO2
First Page Preview
N2O decomposition on CoOx, CuOx, FeOx or MnOx supported on ZrO2: The effect of zirconia doping with sulfates or K+ on catalytic activity
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis B: Environmental - Volume 187, 15 June 2016, Pages 218–227
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us