fulltext.study @t Gmail

CO and soot oxidation activity of doped ceria: Influence of dopants

Paper ID Volume ID Publish Year Pages File Format Full-Text
45502 46413 2016 11 PDF Available
Title
CO and soot oxidation activity of doped ceria: Influence of dopants
Abstract

•Ce-M-oxides (M- Zr, Hf, La, Pr, Fe, Mn) were investigated for CO and soot oxidation.•Superior activity of Ce-Mn-oxide was evidenced.•Various techniques were used to correlate physicochemical properties with activity.•Loosely bound lattice and large surface adsorbed oxygen facilitated better activity.•Synergism between Ce and Mn redox pairs promoted OSC and catalytic activity.

This article represents a comparative study of a series of doped ceria catalysts towards environmental applications like CO and soot oxidation catalysis. Transition and rare earth metals of varying size and reducibility property have been selected namely, zirconium (Zr), hafnium (Hf), iron (Fe), manganese (Mn), praseodymium (Pr), and lanthanum (La) as dopants. A facile coprecipitation approach has been used to incorporate the dopants into ceria lattice.The formation of homogeneous solid solutions and their respective physicochemical properties have been confirmed by employing XRD analysis, BET surface area measurements, TEM, Raman, UV-DRS, XPS, and TPR techniques. All the doped CeO2 samples exhibited smaller crystallite size, larger BET surface area, and higher amounts of oxygen vacancies than that of pure CeO2. CO oxidation has been performed in the presence of oxygen under atmospheric pressure, and 300–850 K temperature range in a fixed bed microreactor. Soot oxidation was carried out in presence of air using a thermo gravimetric analyzer within a much wider temperature window of 300–1273 K. The physicochemical properties of the doped ceria materials have been comparatively analyzed to correlate the influence of dopants with their improved behaviour in both the oxidation reactions. Vital role of ‘lattice oxygen’ in CO oxidation and ‘active oxygen species’ in soot oxidation on the catalyst surface has been considered, assuming that Mars and van Krevelen mechanism and active oxygen mechanism play the key role in CO and soot oxidation, respectively. The O 1s XP spectra confirmed that Mn doped ceria (denoted as CM) exhibited most loosely bound lattice oxygen and highest concentration of surface adsorbed oxygen species compared to other materials. Accordingly, a superior CO and soot oxidation activity have been observed for manganese doped ceria. Significant lowering of T50 (390 K and 669 K for CO and soot oxidation respectively) temperature have been observed in both the oxidation reactions; which is primarily attributed to the considerable lowering of lattice oxygen binding energy and higher concentration of surface adsorbed oxygen species.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Keywords
Doped CeO2; Dopant influence; Oxygen vacancy; CO oxidation; Soot oxidation
First Page Preview
CO and soot oxidation activity of doped ceria: Influence of dopants
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis B: Environmental - Volume 197, 15 November 2016, Pages 105–115
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us