fulltext.study @t Gmail

A review on the visible light active titanium dioxide photocatalysts for environmental applications ☆

Paper ID Volume ID Publish Year Pages File Format Full-Text
46085 46429 2012 19 PDF Available
Title
A review on the visible light active titanium dioxide photocatalysts for environmental applications ☆
Abstract

Fujishima and Honda (1972) demonstrated the potential of titanium dioxide (TiO2) semiconductor materials to split water into hydrogen and oxygen in a photo-electrochemical cell. Their work triggered the development of semiconductor photocatalysis for a wide range of environmental and energy applications. One of the most significant scientific and commercial advances to date has been the development of visible light active (VLA) TiO2 photocatalytic materials. In this review, a background on TiO2 structure, properties and electronic properties in photocatalysis is presented. The development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed. Emphasis is given to the origin of visible light absorption and the reactive oxygen species generated, deduced by physicochemical and photoelectrochemical methods. Various applications of VLA TiO2, in terms of environmental remediation and in particular water treatment, disinfection and air purification, are illustrated. Comprehensive studies on the photocatalytic degradation of contaminants of emerging concern, including endocrine disrupting compounds, pharmaceuticals, pesticides, cyanotoxins and volatile organic compounds, with VLA TiO2 are discussed and compared to conventional UV-activated TiO2 nanomaterials. Recent advances in bacterial disinfection using VLA TiO2 are also reviewed. Issues concerning test protocols for real visible light activity and photocatalytic efficiencies with different light sources have been highlighted.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► VLA-TiO2 include non metal, metal doping, dye sensitized and coupling semiconductors. ► Physicochemical/photoelectrochemical methods to deduce VLA-TiO2 reaction mechanisms. ► Examination of VLA-TiO2 for water treatment, disinfection and air purification.

Keywords
TiO2; Visible; Solar; Water; Treatment; Air purification; Disinfection; Non-metal doping; Anatase; Rutile; N–TiO2; Metal doping; Environmental application; Reactive oxygen species; Photocatalysis; Photocatalytic; EDCs; Cyanotoxins; Emerging pollutants
First Page Preview
A review on the visible light active titanium dioxide photocatalysts for environmental applications ☆
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis B: Environmental - Volume 125, 21 August 2012, Pages 331–349
Authors
, , , , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis