fulltext.study @t Gmail

Insights into the effect of surface hydroxyls on CO2 hydrogenation over Pd/γ-Al2O3 catalyst: A computational study

Paper ID Volume ID Publish Year Pages File Format Full-Text
46535 46441 2012 13 PDF Available
Title
Insights into the effect of surface hydroxyls on CO2 hydrogenation over Pd/γ-Al2O3 catalyst: A computational study
Abstract

The elementary steps leading to the formation of HCOO and CO via CO2 hydrogenation, two important intermediates contributing to methanol and methane formation, respectively, have been explored to identify hydroxylation effect of the oxide support on the selectivity in CO2 hydrogenation on Pd/γ-Al2O3 catalyst by the density functional theory together with slab model calculations. Two models: tetramer Pd4 cluster supported on the dry γ-Al2O3(1 1 0) surface, D(Pd4), and on the hydroxylated γ-Al2O3(1 1 0) surface, H(Pd4), have been employed to model Pd/γ-Al2O3 catalyst. Meanwhile, Pd(1 1 1) surface is used to model the unsupported large Pd particle sizes. On D(Pd4), the formation of CO is preferred both kinetically and thermodynamically. On H(Pd4), HCOO formation becomes more favorable kinetically while CO formation is more facile thermodynamically. However, Pd(1 1 1) surface has not shown strong selectivity and activity for CO2 hydrogenation to HCOO or CO. These results show that varying the properties of γ-Al2O3 support can alter the selectivity of CO2 hydrogenation, moreover, the presence and number of low-coordinated Pd particles is of great importance to improve the overall activity and selectivity of CO2 hydrogenation. Our results also show that to achieve high selectivity of CO2 hydrogenation, Pd/γ-Al2O3 catalyst has to get help from additives, which should be able to improve its dispersion or to control the hydroxylation. The present study provides the basis and one of the directions to the design of improved catalysts in CO2 hydrogenation for methanol, methane and other products.

Graphical abstractCO2 hydrogenation on Pd/γ-Al2O3 catalyst with both the dry and the hydroxylated γ-Al2O3 support suggest that the hydroxylation of γ-Al2O3 support can alter the interaction of metal–support, and ultimately, the selectivity of CO2 hydrogenation. Figure optionsDownload full-size imageDownload as PowerPoint slideHighlights▸ CO is favorably formed on Pd/γ-Al2O3 catalyst with dry support. ▸ HCOO is preferred on Pd/γ-Al2O3 catalyst with hydroxylated support. ▸ Hydroxylation of support can alter the selectivity of CO2 hydrogenation. ▸ The migration of H adatom on Pd is an essential step of CO2 hydrogenation. ▸ Pd/γ-Al2O3 catalyst must get help from additives to achieve high selectivity.

Keywords
Pd/γ-Al2O3; CO2 hydrogenation; Hydroxylation; Support; Density functional theory
First Page Preview
Insights into the effect of surface hydroxyls on CO2 hydrogenation over Pd/γ-Al2O3 catalyst: A computational study
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis B: Environmental - Volume 126, 25 September 2012, Pages 108–120
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis