fulltext.study @t Gmail

A model study based on experiments on toluene removal under high load condition in biofilters

Paper ID Volume ID Publish Year Pages File Format Full-Text
4672 237 2006 6 PDF Available
Title
A model study based on experiments on toluene removal under high load condition in biofilters
Abstract

As a control measure for substrate inhibition phenomenon in biofilters caused by toxic gases with high concentration, an appropriate mathematical model is required to calculate gas concentrations at various positions within and outside biofilms. Thus validation of the Deshussess model, Devinny–Hodge model and Luong Model were carried out for high toluene load conditions, and the results were examined for their veracity. Calculated concentrations using the modified Deshussess model, which considers sorption volume of carriers, approximated to measurements. This appears to mean the contribution of porosity in inorganic ceramic carriers to the biological removal of toluene vapor. Since toluene removal capacities for high liquid concentrations, which were calculated using the Luong model, approximated to the measurements, the generality and usefulness of the Luong model in predicting the substrate elimination capacity in biofilters with substrate inhibition appear to be manifested. Simplified Devinny–Hodge model turned out to be not applicable to predicting gas concentration along longitudinal axis of biofilters with high gas load. Various model parameters, needed for modeling studies, including critical toluene load per unit biomass and time, maximum toluene degradation rate, half velocity toluene concentration, and maximum toluene concentration in liquid, above which biodegradation is inhibited, were experimentally determined.

Keywords
Biofilter; Model verification; Elimination capacity; Toluene vapor; Substrate inhibition; Deshussess model
First Page Preview
A model study based on experiments on toluene removal under high load condition in biofilters
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biochemical Engineering Journal - Volume 28, Issue 3, 1 March 2006, Pages 269–274
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us