fulltext.study @t Gmail

Photocatalysis fundamentals revisited to avoid several misconceptions

Paper ID Volume ID Publish Year Pages File Format Full-Text
47198 46463 2010 8 PDF Available
Title
Photocatalysis fundamentals revisited to avoid several misconceptions
Abstract

Photocatalysis has presently become a major discipline owing to two factors: (i) the intuition of the pioneers of last 20th century and (ii) the mutual enrichment of scientists arising from different fields: photochemistry, electrochemistry, analytical chemistry, radiochemistry, material chemistry, surface science, electronics, and hopefully catalysis. Since heterogeneous photocatalysis belongs to catalysis, all the bases of this discipline must be respected: (i) proportionality of the reaction rate to the mass of catalyst (below the plateau due to a full absorption of photons); (ii) implication of the Langmuir–Hinshelwood mechanism of kinetics with the initial rate being proportional to the coverages θ in reactants;(iii) conversions obtained above the stoichiometric threshold defined as the maximum number of potential active sites initially present at the surface of a mass m of titania used in the reaction. In addition, one should respect photonics, with the photocatalytic activity, i.e. the reaction rate being (i) parallel to the absorbance of the photocatalyst and (ii) proportional to the radiant flux Φ. In every study, one should determine the quantum yield (QY) (or efficiency), which, although dimensionless, is a “doubly kinetic” magnitude defined as the ratio of the reaction rate r (in molecules converted/second) to the efficient photonic flux (in photons/second) received by the solid. This is an instantaneous magnitude directly linked to the parameters mentioned above, in particular to the concentration. It can vary from a maximum value of ca. 40% in pure liquid phase to very low values (10−2%) in diluted media (pollutants trace eliminations). To establish true photocatalytic normalized tests, the above recommendations must be observed with a real catalytic activity independent of non-catalytic side-reaction. In particular, dye decolorization, especially in the visible, provides an apparent “disappearance” of the dye, due to a limited stoichiometric electron transfer from the photo-excited dye molecule to titania, subsequently compensated by an additional ionosorption of molecular oxygen.The energetics of photocatalysis on TiO2, being based on the energy E of the photons, i.e. E ≥ 3.2 eV, enables one to produce OH radicals, the second best oxidizing agent. The decrease of energy E to the visible may be thermodynamically detrimental for the generation of such highly cracking and degrading species. Concerning solid state chemistry, it is now finally admitted that cationic doping is detrimental for photocatalysis. In conclusion, all these recommendations have to be addressed and experiments have to be operated in suitable conditions before claiming that one deals with a true photocatalytic reaction.

Keywords
Photocatalysis; Fundamentals; Right protocol; Misconceptions
First Page Preview
Photocatalysis fundamentals revisited to avoid several misconceptions
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis B: Environmental - Volume 99, Issues 3–4, 9 September 2010, Pages 461–468
Authors
,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us