fulltext.study @t Gmail

Design of polymer brushes for immobilizing enzymes onto hollow fiber micropores in organic media reaction

Paper ID Volume ID Publish Year Pages File Format Full-Text
4723 240 2007 7 PDF Available
Title
Design of polymer brushes for immobilizing enzymes onto hollow fiber micropores in organic media reaction
Abstract

To immobilize lipase for enzymatic reactions in organic solvent, various functional [epoxy (GMA-fiber), hydroxyl (OH-fiber) or diethyl amino (DEA-fiber)] groups were introduced onto porous hollow-fiber membranes by radiation-induced graft polymerization of glycidyl methacrylate and chemical modification. Lipase from Candida rugosa was immobilized on polymer brushes by permeation of lipase. The activities of immobilized lipase were measured by esterification reactions between lauric acid and benzyl alcohol in isooctane. The activity of immobilized lipase on GMA-fibers, DEA-fibers and OH-fibers was 0.70 mol/(h kg-lipase), 0.50 mol/(h kg-lipase), and 2.45 mol/(h kg-lipase), respectively. Immobilized lipase on DEA-fibers or OH-fibers was reused three times after it was used in the batch reactor for 24 h. It was found that lipase activity showed no signs of denaturation. However, when native lipase was used, lipase activity remarkably decreased after reusing.

Keywords
Enzyme activity; Enzyme technology; Esterification reaction; Immobilized enzymes; Lipase; Polymer brush
First Page Preview
Design of polymer brushes for immobilizing enzymes onto hollow fiber micropores in organic media reaction
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biochemical Engineering Journal - Volume 37, Issue 2, 15 November 2007, Pages 159–165
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us