fulltext.study @t Gmail

Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting

Paper ID Volume ID Publish Year Pages File Format Full-Text
47351 46469 2009 6 PDF Available
Title
Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting
Abstract

We report that mild oxidation of Ti foils in air results in brookite-rich titanium oxide (TiO2) films with similar spectral response to that of dye-sensitized TiO2. X-ray powder diffraction and Raman spectroscopy show that the onset of brookite formation occurs at 500 °C, and the material is characterized by a strong absorption band in the visible spectral range. The first-principle calculations show that enhanced visible light absorption correlates with the presence of Ti interstitials. Photocurrent density measurements of water splitting reveal that the brookite-rich TiO2 exhibits the highest photocatalytic performance among the different forms of TiO2 produced by oxidation of Ti foils. With increasing oxidation temperature transformation to the rutile phase accompanied by declining visible range photoactivity is observed.

Keywords
Brookite; TiO2; Water splitting; Catalysis; Bandgap; Photoenergy
First Page Preview
Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis B: Environmental - Volume 93, Issues 1–2, 25 November 2009, Pages 90–95
Authors
, , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us